LOAN DOCUMENT

	DOMN DOCCIVIES	
MBER	PHOTOGRAPH THIS	INVENTORY
DTIC ACCESSION NUMBER	Life Cycle Assessment for Resistant Coating DOCUMENT IDENTIFICATION Sep 96	
	Approved for postribution	rablic releases
/	DISTRIBUTI	ON STATEMENT
DISTRIBUTION STAMP		DATE ACCESSIONED
		DATE RETURNED
1998	0710 087	
DATE	PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-F	REGISTERED OR CERTIFIED NUMBER
TIC POINT 70A	DOCUMENT PROCESSING SHEET	PREVIOUS EDITIONS MAY BE USED UNTIL STOCK IS REVALETIED.

LOAN DOCUMENT

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

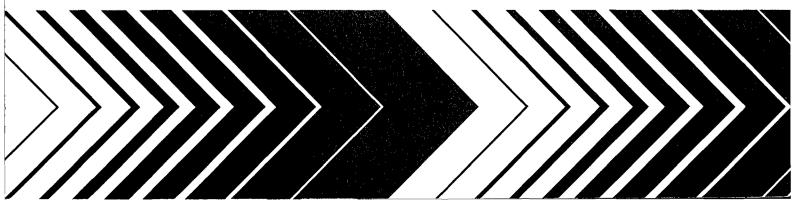
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-018), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)	2. REPORT	3. REPORT TYPE AND DATES COVERED			
	DATE Sept. 1996	1100000110110110110110			
4. TITLE AND SUBTITLE			5. FUNDING	NUMBERS	
Life Cycle Assessment for Chemical Agent Resistant	Coating		EPA Contract No.	. 68-C4-0020	
Life Cycle Assessment for Chemical Agent Resistant	Coating		& PO No.07		
			& 1 O 110.07	1107	
6. AUTHOR(S)	_				
Battelle Columbus & Lockheed-Martin Environment	al				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS	S(ES)		8. PERFORM	ING ORGANIZATION	
	-(/		REPORT N	UMBER	
Sustainable Technologies Division					
National Risk Management Research Laboratory			N/A		
Cincinnati, OH 45268					
9. SPONSORING / MONITORING AGENCY NAME(S) AND /	ADDRESS(ES)		10. SPONSOF	RING / MONITORING	
				REPORT NUMBER	
SERDP					
901 North Stuart St. Suite 303			N/A		
Arlington, VA 22203					
11. SUPPLEMENTARY NOTES					
Assessment written for Kenneth R. Stone and Johnny					
Research and Development, U.S. Environmental Prot					
part by EPA under Contract No. 68-C4-0020 & Purch					
license throughout the world in all copyrightable mat	erial contained he	rein. All other rights are	reserved by		
12a. DISTRIBUTION / AVAILABILITY STATEMENT				12b. DISTRIBUTION CODE	
Approved for public release: distribution is unlimited				A	
Approved for public release, distribution is diffinited					
13. ABSTRACT (Maximum 200 Words)					
	Constant			Durate of the Annual	
This project was sponsored by the Department of Def National Risk Management Research Laboratory (NR					
that improve mission readiness for federal activities,					
i mai miprove mission readiness for redelat activities, i	mis report was de	veroped to determine me	, օրապահ ան	awrais and equipment tot	

This project was sponsored by the Department of Defense SERDP and conducted by the U.S. Environmental Protection Agency National Risk Management Research Laboratory (NRMRL). In support of SERDP's objective to develop environmental solutions that improve mission readiness for federal activities, this report was developed to determine the optimum materials and equipment for applying chemical agent resistant coating (CARC) to vehicles at the Army Transportation Center at Fort Eustis, VA. A life cycle assessment (LCA) was conducted to identify the performance, cost, and environmental impacts of various combinations of CARC materials and equipment. The variables for this study were the primer, thinner, CARC topcoat, and spray application equipment. Combinations of the variables were grouped to develop five alternatives. The recommended alternative would change the existing primer and application equipment, but retain the existing thinner and topcoat. This alternative would maintain required performance characteristics, achieve cost objectives, and result in low environmental impacts in relation to the other alternatives.

14. SUBJECT TERMS			15. NUMBER OF PAGES 254
Chemical Agent Resistant Coating, Life	Cycle Assessment, SERDP		16. PRICE CODE N/A
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
unclass.	OF THIS PAGE unclass.	unclass.	UL

NSN 7540-01-280-5500


Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 United States
Environmental Protection
Agency

Office of Research and Development Washington DC 20460

EPA/600/R-96/104 September 1996

SEPA

Life Cycle Assessment for Chemical Agent Resistant Coating 15-1996

LIFE CYCLE ASSESSMENT FOR CHEMICAL AGENT RESISTANT COATING

By

Battelle Columbus and Lockheed-Martin Environmental

Contract No. 68-C4-0020

Project Officers

Kenneth R. Stone and Johnny Springer, Jr.
Sustainable Technologies Division
National Risk Management Research Laboratory
Cincinnati, Ohio 45268

NATIONAL RISK MANAGEMENT RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268

Notice

The information in this document has been funded wholly or in part by the United States Environmental Protection Agency under Contract 68-C4-0020 to Lockheed Environmental Services Division through Purchase Order Number 07PPG7 from Lockheed to Battelle. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Foreword

Today's rapidly developing and changing technologies and industrial products and practices frequently carry with them the increased generation of material that, if improperly dealt with, can threaten both public health and the environment. The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and carry out action leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. These laws direct the EPA to do research to define our environmental problems, measure the impacts, and search for solutions.

The National Risk Management Research Laboratory is responsible for planning, implementing, and managing research development, and demonstration programs. These provide an authoritative defensible engineering basis in support of the policies, programs and regulation of the EPA with respect to drinking water, wastewater, pesticides, toxic substances, solid and hazardous wastes, and Superfund -related activities. This publication is a product of that research and provides a vital communication link between researchers and users.

This report describes a life cycle assessment on the painting, depainting and repainting of military vehicles with chemical agent resistant coating (CARC). A life cycle design approach that follows EPA's guidance manual includes consideration in the areas of environmental, performance, and cost requirements for the products and processes evaluated. Four specific final products associated with the painting, depainting, and repainting of military vehicles were used in the life-cycle assessment.

E. Timothy Oppelt, Director National Risk Management Research Laboratory

Abstract

This project was sponsored by the Department of Defense Strategic Environmental Research and Development Program (SERDP) and conducted by the U. S. Environmental Protection Agency National Risk Management Research Laboratory (NRMRL). In support of SERDP's objective to develop environmental solutions that improve mission readiness for federal activities, this report was developed to determine the optimum materials and equipment for applying chemical agent resistant coating (CARC) to vehicles at the Army Transportation Center at Fort Eustis, VA. A life cycle assessment (LCA) was conducted to identify the performance, cost, and environmental impacts of various combinations of CARC materials and equipment. The variables for this study were the primer, thinner, CARC topcoat, and spray application equipment. Combinations of the variables were grouped to develop five alternatives. The recommended alternative would change the existing primer and application equipment, but retain the existing thinner and topcoat. This alternative would maintain required performance characteristics, achieve cost objectives, and result in low environmental impacts in relation to the other alternatives.

Table of Contents

1.0	Introdu	ction
	1.1	Strategic Environmental Research and Development Program 1-1
	1.2	Life Cycle Assessment Research Program
	1.3	DfE Life-Cycle Approach
		Life Cycle Assessment for CARC
		CARC System Improvement Potential
		. , , , , , , , , , , , , , , , , , , ,
2.0	Life Cv	cle Inventory
		LCI Scope and Limitations
		LCI Methodology
		LCI Data Development
		LCI Baseline Revisions and Enhancements
		LCI Functional Unit
		LCI Data
		2012310 11111111111111111111111111111111
3.0	Parame	ters Evaluated
0.0		Inventory Analysis
		Environmental Impact/Hazard Assessment
	5.2	3.2.1 Classification and Stressor/Impact Chains
		3.2.2 Characterization
		3.2.3 Key Assumptions for LCIAs
	2 2	Economic Assessment
	3.3	3.3.1 Methodology
		3.3.2 Evaluated Parameters
	3.4	Performance Assessment
	3.4	3.4.1 Application Equipment
		3.4.2 Primers
		3.4.3 Thinners
		3.4.4 Application Equipment Evaluation Parameters
		3.4.5 Primer Evaluation Parameters
		3.4.6 Thinner Evaluation Parameters
	2 5	-
	3.5	Valuation Procedure
4.0	Deserie	tion and Screening of Improvement Options
4.0		Alternatives Identified/Selected
		Environmental Impact/Hazard Classification
		Economic Assessment
	4.4	Performance Assessment
		4.4.1 Application Equipment
		4.4.2 Primers
		4.4.3 Thinners

5.0	Life Cy	cle Impact	Assessment Results					5	-1
	5.1	Environm	ental Impact Characterization/Valuation					5	-1
		5.1.1	Impact Characterization					5	-1
		5.1.2	Impact Valuation					5	-1
	5.2	Economic	Assessment					5	-6
		5.2.1	Fixed Capital Investment					5	-6
			Annual Operating Cost						
			Annualized Cost						
	5.3		ace Assessment						
			Application Equipment						
			Primer						
			Thinners						
		0.0.0			• •	• •		. 0	J
6.0	Techni	cal and Eco	onomic Evaluation of Improvements					6.	-1
• • •			Analysis						
			ental Impact/Hazard Characterization						
	0.2		Impact Characterization					-	_
			·						-
			Sensitivity Analysis					_	_
	6.3		Assessment					_	_
			Fixed Capital Investment						
			Annual Operating Cost						
			Annualized Cost						-
	6.4		ce Evaluation						
		6.4.1	Application Equipment					6-3	1
		6.4.2	Primers					6-3	2
		6.4.3	Thinners					6-3	3
	6.5	Valuation	Process					6-3	4
	6.6	Overall Im	provement Assessment Results					6-3	6
7.0	Implem	entation Pl	an					. 7-	1
			ce Demonstration						
			Application Equipment						
			Primer						
			Thinner						
	7.2		nt Considerations						
			Application Equipment						
			Primers and Thinners						
	73		equirements						
	7.5	_	Application Equipment						
			Primers and Thinners						
		7.3.2	Timers and Timmers		• • •	• •	• •	. /-	3
ΩΛ	Conclus	ione						0	1
6.0	Conclus	oons				٠.	• •	. 8-	ı
	Dibliana							•	4
9.0	Bibliogr	apny		• • • •	• • •	• •	• •	. 9-	1
A	andt. A	D	lave Diagrama						
			low Diagrams						
			afety Data Sheets						
			nventory Tables						
			ental Impact Equivalency Value Calculations and Decisio	n Tree:	s.				
Anna	ndiv E	Sancitivity	, Analysis					E_1	1

List of Tables

Number	Page
Table 1-1.	CARC Systems for Evaluation in LCImA
Table 2-1.	Various CARC, Primers, and Thinners Used at Major Army Installations 2-2
Table 3-1.	Percent Composition of Baseline CARC Topcoat
Table 3-2.	Percent Composition of Baseline and Alternative Primers 3-2
	Percent Composition of Baseline and Alternative Thinners
Table 3-4.	Raw Material Unit Costs 3-11
Table 3-5.	Process Assumptions 3-12
Table 4-1.	Stressor/Impact Networks for Impacts of Primary Concern in CARC Life Cycle 4-2
Table 4.2.	Chemical Equivalency Factors for Major Impact Categories Associated with CARC LCA
Table 5-1.	Life Cycle Impact Valuation Calculations 5-5
Table 5-2.	Estimated Baseline FCI, Annual Operating Cost, and Annualized Costs 5-6
Table 5-3.	Estimated Baseline Fixed Capital Investment
	Estimated Baseline Annual Operating Cost 5-7
	Annualized Baseline Cost
	Baseline CARC System Life Cycle Inventory Summary Results 6-2
	Alternative Primer CARC System Life Cycle Inventory Summary Results 6-5
	Alternative Gun CARC System Life Cycle Inventory Summary Results 6-9
	Alternative Primer & Gun CARC System Life Cycle Inventory Summary Results 6-12
	Alternative Thinner CARC System Life Cycle Inventory Summary Results 6-15
Table 6-6.	Alternative Primer and Thinner CARC System Life Cycle Inventory Summary Results
	6-19
	Comparison of Normalized, Factored Environmental Impact 6-24
	Estimated FCI, Annual Operating Cost, and Anualized Costs 6-27
	Estimated Baseline Fixed Capital Investment
	Estimated Annual Operating Cost
•	Annualized Cost
	Life Cycle Impact Valuation Calculations for Baseline
	Life Cycle Impact Valuation Calculations for Alternative Primer
	Life Cycle Impact Valuation Calculations for Alternative Gun 6-40
	Life Cycle Impact Valuation Calculations for Alternative Primer and Gun 6-41
	Life Cycle Impact Valuation Calculations for Alternative Thinner 6-42 Life Cycle Impact Valuation Calculations for Alternative Primer and Thinner 6-43
Table 6-17.	Life Cycle impact valuation Calculations for Alternative Primer and Thinner 6-43

List of Figures

Number	<u> </u>	Page
Figure 3-1.	CARC application and depainting processes at Fort Eustis (from Hendricks, et al.,	
	1995)	3-7
Figure 3-2.	Fort Eustis depainting building	3-9
Figure 5-1.	Results of impact category valuation by the AHP	5-3
Figure 5-2.	Relative importance of nine primary impact categories based on AHP	5-4
Figure 6-1.	Energy consumption by type	3-22
Figure 6-2.	Solid/hazardous waste	3-22
Figure 6-3.	Criteria air pollutants	3-23
Figure 6-4.	Structure of the analytic hierarchy for CARC alternatives	3-35
Figure 6-5.	Overall weights derived for the valuation of CARC alternatives	3-37

Acronyms

AG alternative gun

AHP Analytical Hierarchy Process

AP acidification potential BCF bioconcentration factor

BG baseline gun

BOD biological oxygen demand
BTU British Thermal Unit

CARC chemical agent resistant coating
CAS Chemical Abstract Service
CIS Chemical Information Systems
CSD Chemical Specialists & Development

DfE Chemical Specialists & Developr
design for the environment

DoD Department of Defense
DOE Department of Energy

The second of the environment of the second of

EC Expert Choice™

EPA Environmental Protection Agency

FCI fixed capital investment FSC Federal Stock Class

ft² square feet gallon

GWP global warming potential HAP hazardous air pollutant

HSDB Hazardous Substances Databank

HV hazard value

HVLP high-volume, low-pressure

IRIS Integrated Risk Information System

kw kilowatt Ibs pounds

LC₅₀ lethal concentration, 50% LCA life cycle assessment LCI life cycle inventory

LCIA life cycle impact assessment LCImA life cycle improvement assessment

LD₅₀ lethal dose, 50% in natural log

MEDLARS Medical Literature and Analysis Retrieval System

MEK methyl ethyl ketone
MIL-SPEC military specification

MSDSs Material Safety Data Sheets

NIINs National Item Identification Number

NO_x nitrogen oxides

NRMRL National Risk Management Research Laboratory

ODP ozone depletion potential

P2 pollution prevention

Pb lead

PE purchased equipment

PES Pacific Environmental Services

PM particulate matter

POCP photochemical oxidant creation potential

ppm parts per million

PPOA pollution prevention opportunity assessment
QSAR quantitative structure-activity relationship

POSED Property Design and Development

RD&D Research, Design and Development

RTECS Registry of Toxic Effects of Chemical Substances

SAR structure-activity relationship

SERDP Strategic Environmental Research and Developement Program

SETAC Society of Environmental Toxicology and Chemistry

SO_x sulfur oxides

SRI Southern Research Institute

TE transfer efficiency
TRI toxic release inventory
VOC volatile organic compound

WA Work Assignment

WREAFS Waste Reduction Evaluation At Federal Sites

1.0 Introduction

The research effort described in this report was conducted under cooperating programs of both the Department of Defense (DoD) and the Environmental Protection Agency (EPA). Among the shared objectives of the cooperators is demonstrating the effectiveness of analytical tools and environmental techniques to reduce environmental impacts and costs of operations while maintaining performance standards. This project was sponsored by the DoD's Strategic Environmental Research and Development Program (SERDP) and conducted by the EPA's Life Cycle Assessment (LCA) Research Team at the National Risk Management Research Laboratory (NRMRL).

1.1 Strategic Environmental Research and Development Program

Improving Mission Readiness Through Environmental Research

SERDP was established in order to sponsor cooperative research, development, and demonstration activities for environmental risk reduction. Funded with DoD resources, SERDP is an interagency initiative between DoD, the Department of Energy (DOE), and EPA. SERDP seeks to develop environmental solutions that improve mission readiness for federal activities. In addition, it is expected that many techniques developed will have applications across the public and private sectors.

1.2 Life Cycle Assessment Research Program

Since 1990, NRMRL has been at the forefront of development of Life Cycle Assessment as a methodology for environmental assessment. In 1994, NRMRL established an LCA Team to organize individual efforts into a comprehensive research program. The LCA Team coordinates work in both the public and private sectors with cooperators ranging from members of industry and academia to federal facility operators and commands. The team has published project reports and guidance manuals, including "Life Cycle Assessment: Inventory Guidelines and Principles" and "Life Cycle Design Guidance Manual." The work described in this report is a part of an expanding program of research in LCA taking place under the direction of NRMRL in Cincinnati, Ohio.

1.3 DfE Life-Cycle Approach

A life-cycle design for the environment (DfE) approach that follows EPA's (1993a) guidance manual includes consideration of requirements in the following areas: environmental, performance, cost, cultural, and legal requirements. However, this report focuses on evaluation of the first three life-cycle design requirements. The life-cycle environmental evaluation and cost and performance information are based on data from the draft life cycle inventory (LCI) (Hendricks et al., 1995), pollution prevention opportunity assessment (PPOA) (Cavender et al., 1994), and supplementary information collected as part of the life cycle impact assessment (LCIA) and life cycle improvement assessment (LCIMA).

The DfE approach is derived from a generalized process for product design, which begins with a needs analysis, defines product or process requirements, and identifies design solutions. When implemented as a DfE effort, the requirements assessment includes environmental elements specified as essential or desirable features. The design solutions then have a broader range of attributes than would be the case in a traditional analysis.

The procedures for interpreting LCI and LCIA results for the determination of improvement opportunities are not standardized. A multi-step process combining analysis of the baseline environmental data along with the possible engineering changes in the system was used to directionally identify promising options. The steps include:

- · Definition of improvement objectives and constraints
- Translation of objectives into design/technology requirements
- Preliminary identification of options
- Determination of potential changes in system boundaries

These steps were conducted as part of the exercise to define the baseline and complete the inventory analysis and impact assessment. The alternatives assessment process, which constitutes the LCImA, then continues with the following elements:

- Identification of data needs for alternatives
- · Generation of LCI/LCIA data for alternatives
- · Generation of economic and performance data for alternatives, and
- Application of a decision support process for conducting tradeoffs analysis.

1.4 Life Cycle Assessment for CARC

NRMRL has developed projects to promote the integration of pollution prevention concepts into the design of systems. The purpose is to enhance performance, reduce logistics and maintenance requirements, reduce environmental and energy burdens and extend service life. Under this program, SERDP and NRMRL are focusing on painting and depainting operations for aircraft and military vehicles.

The U.S. Army's Transportation Center at Fort Eustis, Virginia provides educational and training services in military transport to Army personnel. Part of the mission at Fort Eustis is to paint, depaint and repaint military vehicles with a chemical agent resistant coating (CARC). The purpose of this project is to conduct an LCA for CARC operations at Fort Eustis which also considers cost and performance as described in EPA's life-cycle design manual (EPA 1993a).

A PPOA was conducted by Southern Research Institute (SRI) and PES at Fort Eustis to evaluate waste reduction opportunities associated with CARC painting and depainting operations (Cavender et al., 1994). The PPOA was part of the Waste Reduction Evaluations at Federal Sites (WREAFS) program and involved identification and evaluation of new technologies and techniques for reducing waste generation from CARC painting/depainting operations at Fort Eustis. The advantages and disadvantages of the base case and each P2 option are discussed. As in the case of most P2 studies, this PPOA only considered the use stage (depainting/painting) of the CARC life cycle. The PPOA was used to establish the potential options for the LCA.

A draft LCI was prepared by Pacific Environmental Services (PES) to provide a baseline of environmental and utility data that describes the production of components for the CARC painting/depainting system (i.e., topcoat, primer, thinner, and blast media), their raw materials, paint application and depainting, and disposal of spent CARC and blast media (Hendricks, et.al., 1995). The LCI baseline was revised to account for actual operations at Ft. Eustis and additional impact

information was included to complete the LCA. The LCIA and LCIMA were prepared according to EPA's LCA guidance document (EPA, 1993b) and the Society of Environmental Toxicology and Chemistry (SETAC 1991, 1993, and 1994) framework documents. This document contains a revised and summarized version of the LCI data along with the LCIA and LCIMA results.

1.5 CARC System Improvement Potential

Within the established environmental criteria for the LCA, the baseline CARC system improvement potential appears to be greatest in the relative environmental impact contribution to global warming. However, this does not imply that CARC is a major contributor to this issue on an absolute basis. Somewhat less important are the regional scale impacts of photochemical smog and the aggregated indicators associated with toxicity potential. Alternative formulations emitting less of these constituents throughout the life cycle coupled with application practices that increase the efficiency of material usage (translating back up the life-cycle stages due to lower contributions per functional unit) are the most attractive.

However, the environmental aspects of CARC painting must be balanced with economic and performance aspects. It may be possible to conceive of a system where the coating is transferred with 100% efficiency through the use of no solvent at all (a powder coating for example). Although such a system may be a long-term R&D goal, its performance could not be guaranteed according to current military specifications (MIL-SPECS) and its cost may be prohibitive. Considering that operating labor and overheads represent more than half the baseline costs, alternatives that decrease the human input at the expense of modest increases in material or variable operating costs (material costs, electricity, and supplies represent about 25% of the total baseline costs) would be an overall improvement, especially if there were corresponding performance and environmental benefits.

The assessment of CARC alternatives is intended to identify and evaluate alternatives that are able to be implemented with a reasonable level of institutional, logistical, and operational challenges and within a short-term time frame. Therefore, it was decided that certain performance and cost constraints should be imposed as preliminary assessment thresholds. Identification of CARC systems that are improvement candidates on all three assessment dimensions (environmental, performance, cost) were constrained to those that currently provide acceptable performance (i.e. that are MIL-SPEC compliant), that are cost-competitive, and reduce environmental impacts. Systems considered to be attractive included various combinations of CARC topcoat, primer, and thinner, having different environmental properties than the baseline, as well as application methods and tools that potentially could increase materials use efficiency and decrease the time involved for painting operations. Equipment and technology to implement the improvements was also a consideration.

Application of the cost and performance thresholds resulted in a matrix of alternatives to be considered. The alternatives shown in Table 1-1 include permutations of alternative primer, thinner, and application technology (spray gun). Additional technology-related options appeared to be site-specific (e.g., spray booth configuration, filtration systems, and material storage, and were not considered separate alternatives). Similarly, the blast medium and technology (aluminum oxide) was considered both cost-effective and environmentally acceptable and was not subject to evaluation.

Table 1-1. CARC Systems for Evaluation in LCImA

CARC Systems Evaluated	CARC Topcoat ^(a)	Primer ^(b)	Thinner ^(c)	Topcoat Spray Gun ^(d)
1 (Baseline)	вс	ВР	ВТ	BG
2	вс	AP	ВТ	BG
3	вс	BP	ВТ	AG
4	вс	AP	ВТ	AG
5	вс	BP	AT	BG
6	вс	AP	AT	BG

⁽a) BC = Baseline CARC Topcoat, MIL-C-53039A, Hentzen 08605GUZ-GD, 1-part urethane

⁽b) BP = Baseline Primer, MIL-P-53022, Niles 2-part epoxy, solvent thinned; AP = Alternative Primer, MIL-P-53030, Deft 2-part epoxy, water thinned

⁽c) BT = Baseline Thinner, MIL-T-81772B, CSD; AT = Alternative Thinner, Fed. Std. A-A-857B (used by Fort Eustis, but not evaluated by in LCI)

BG = Baseline Gun, high volume, low pressure (HVLP) spray gun (thinning of topcoat required); AG = Alternative Gun, turbine HVLP spray gun with increased transfer efficiency relative to conventional HVLP gun.

2.0 Life Cycle Inventory

To fully account for all impacts of the CARC operation, a complete evaluation must be made of the raw materials used, energy required, water used, and the generation of atmospheric emissions, solid waste, waterborne waste, and hazardous waste. A baseline should incorporate inputs and outputs from every operation used, from processing the basic raw materials through all operations involved in taking the material from the earth and disposal of the residue material back to the earth. To be practical and useful, a baseline must reflect the reality of the process as it is currently practiced.

2.1 LCI Scope and Limitations

The initial phase of the life cycle inventory (LCI) consisted of studying available information on the CARC application and depainting processes and conducting an intensive, three-day site survey, literature search, and phone survey of major Army installations. Using the information obtained from the site survey, literature survey, and telephone contacts with the major U.S. Army facilities, a scoping document was prepared. The scoping document identified uses of CARC, the CARC product manufacturers, the primers and the thinners used in CARC systems, the blasting media used in the removal of CARC systems, and the types of CARC application and depainting techniques used.

The scoping document and input from EPA's NRMRL personnel were used to identify the specific products (the CARC, the primer, the thinner) to be addressed in the LCI. The specific application and depainting techniques to be investigated were also selected. The recommendations were based mainly on the products and techniques being used at Fort Eustis. A one-component topcoat is used as the final CARC layer to protect military vehicles from chemical warfare agents, primarily because it is more resistant to penetration by these chemical agents than alkyd paints. CARC paint does not absorb these substances, while alkyd paints absorb these toxic chemical agents and slowly release them. Also, CARC can last up to four times longer than alkyd paints. The only CARC topcoat used at Fort Eustis is MIL-C-53039A produced by Hentzen Coatings under the name 383 Green Zenthane.

Primers are applied to the surface of military equipment after depainting and surface preparation, in order to provide anticorrosive properties and adhesion of the topcoat. The CARC primer used at Fort Eustis and most other military installations is MIL-P-53022, a two-component epoxy primer. The brand used at Fort Eustis is produced by Niles Chemical Company and was chosen for the baseline LCI. The two-component epoxy primer is prepared for application by mixing four parts of Part A with one part of Part B. Once the primer is dry, a one-component CARC topcoat is applied. Both the primer and topcoat are applied with a high-volume, low-pressure (HVLP) spray gun.

A thinner is used to dissolve, dilute, suspend, or change the physical properties of other materials. At most Army bases except Fort Eustis, thinner MIL-T-81772 is used to dilute CARC and primer, in order to enhance ease of application, and to control the coating drying rate. Thinner MIL-T-81772 was used for the baseline LCI due to its wide-range use at Army facilities (Table 2-1). Thinner is also used prior to CARC painting to remove dust and grease from the vehicles that may

interfere with proper paint adhesion. Fort Eustis used a thinner that is not recognized specifically as a CARC thinner until 1995. Checks with Fort Eustis determined they preferred the characteristics of the thinner they were using (A-A-857B); they claimed it performed better in the hot, humid weather found at Fort Eustis. However, Fort Eustis and Fort Campbell were contacted in 1996 and both facilities had stopped use of A-A-857B. Based on the telephone survey conducted, 11 of the 13 Army facilities contacted used another thinner (MIL-T-81772) which according to painting instructions of Department of the Army is the applicable solvent for the CARC used at Fort Eustis (MIL-C-53039A).

Since aluminum oxide is used as a blasting medium at Fort Eustis to remove CARC, it was selected for the baseline LCI. It is preferred over other blasting materials for the depainting process because of its high efficiency and low cost. Aluminum oxide is extremely hard and the crystal surface is covered with sharp angles, which makes it an ideal blast media for the removal of CARC from steel surfaces.

Table 2-1. Various CARC, Primers, and Thinners Used at Major Army Installations

			CARC used			Primer use	d	Th	ninner used	1
U.S. Army Installations	State	MIL-C- 53039	MIL-C- 46168	MIL-C- 22750	MIL-P- 53022	MIL-P- 53030	MIL-P- 23377	A-A-857B	MIL-T- 6095	MIL-T- 81772
Anniston Army Depot	AL		x	x	×					X
Corpus Christi Army Depot	тх	×	x	x	×		x			X
Fort Benning	GA	×								х
Fort Bliss	тх	x		i			x			х
Fort Bragg	NC	x				x			x	
Fort Campbell	KY	x	x				*	x		X
Fort Devens	МА	×				x				х
Fort Eustis	VA	x			×			х		
Fort Hood	тх	x			x	x	x			х
Fort Knox	KY	x				x				х
Fort Lewis	WA	×								х
Red River Army Depot	тх	x	x	x	x					x
Fort Riley	κs	x								x

The products and techniques evaluated for the LCI were:

CARC: MIL-C-53039APrimer: MIL-P-53022Thinner: MIL-T-81772

Blasting Media: Aluminum oxide

Blasting Technique: high pressure air blastingPainting Technique: HVLP spray painting

Additional limitations in scope were used to streamline the LCI. The study focused on evaluating the main process reactions and excluded the low concentration ingredients (less than 1 percent) and catalysts used in the process reactions. It was assumed that ingredients used in small concentrations have small environmental impact in the life cycle.

2.2 LCI Methodology

In developing the LCI, all of the principal ingredients used to produce the final products were identified. The specific chemicals were identified using Material Safety Data Sheets (MSDS) provided by the manufacturers. Literature research was then conducted to identify the processes used to make the principal ingredients and to identify the raw materials. This process was repeated until every raw material was traced back to a fundamental precursor (i.e., one identified as coming from the earth as an ore or a petroleum product). Appendix A contains process flowsheets for the production of each of these final products, and Appendix B contains the MSDSs.

Each process was reviewed to determine the process inputs and the outputs. Process inputs include raw materials, water, and energy (i.e., electrical, natural gas (as fuel^a), oil and coal). Outputs include the end product atmospheric emissions, waterborne waste and solid waste. Atmospheric emissions are the total for all pollutant types, including criteria pollutants^b and hazardous air pollutants (HAP). Solid waste totals include hazardous and non-hazardous waste streams.

2.3 LCI Data Development

For each manufacturing process in the life cycle, data were required for raw material usage, utility requirements, and waste generation. Many manufacturers would not divulge information, because they were suspicious about unsolicited attempts to obtain proprietary process information. Secondary sources of data, such as industry reports, EPA documents, and magazine articles are available but vary in quality, completeness and timeliness. In general, chemicals produced in large quantities tended to have better quality and more complete information. Where primary process information was missing, streamlining measures were taken, and engineering estimates and assumptions were made. With this approach, it was possible to develop an "order-of-magnitude" estimate for the CARC LCI.

A typical search for data began by consulting general reference books on industrial chemical production processes such as Kirk-Othmer *Encyclopedia of Chemical Technology* or the *Encyclopedia of Chemical Processing and Design*. These sources often provided the necessary information, such as the process descriptions, raw materials consumption or utilities requirements, generally in the form of industry averages. The next level of the search involved resources on particular subjects such as the *Handbook of Petrochemicals and Processes*, *The USEPA's Industrial Process Profiles for Environmental Use*, or the *Environmental Sources and Emissions Handbook*. Again, the data were given in industry averages or averages from a number of monitored plants.

Searches for reports, articles or other sources of information were undertaken in an attempt to fill remaining gaps in the data. These searches sometimes yielded EPA reports, EPA contracted reports, or industry trade magazine articles. Information published after 1974 was considered sufficiently current.

Natural gas used in manufacturing is shown as a raw material, not as an energy input.

^b Criteria pollutants are volatile organic compounds (VOCs), sulfur oxides (SOx), nitrogen oxides (NOx), particulate matter (PM), inhalable particulate matter (PM₁₀), carbon monoxide (CO), and lead (Pb).

2.4 LCI Baseline Revisions and Enhancements

As part of the scoping activity for the LCIA, it was determined that several of the chemical components in the CARC life cycle described in the draft LCI (Hendricks et al., 1995) could be revised to fill in missing data or to provide more recent data on the manufacturing processes. Chemicals identified as most important for collection of additional LCI data were adiponitrile, cobalt chromite green, hexamethylenediamine, magnesium ferrite, phosgene, sodium cyanide, and sodium dichromate. Second tier chemicals included butyl acetate, butyl alcohol, and methyl isoamyl ketone. Additional chemicals derived closely from the crude oil and natural gas refining processes were not included in this ranked system, because they are part of the crude oil and natural gas extraction and refining models incorporated into the inventory model. This included aromatic 100, carbon monoxide, hydrogen, and propane.

Emissions for electrical production, crude oil refining, and natural gas production were taken from Battelle's LCI databases. The electrical production model calculates the pollutant loadings for the national electrical grid based on the fractions of power created from coal, hydrocarbons, nuclear, hydropower, wind, etc. The crude oil and natural gas models included detailed data on many of the primary refinery chemicals such as hydrogen, propane, aromatic 100, etc.

The next best readily available source for emissions data was to determine manufacturers of the chemicals of interest in Southern Research Institute's (SRI) (1993) 1993 Directory of Chemical Producers and cross reference the manufacturer with 1993 Toxics Release Inventory (TRI) emission data. 1993 was the latest year for which both SRI and TRI data were both available. Production tables were available in the SRI directory for several chemicals of interest to the CARC study, thus allowing direct calculation of the emission rates per pound of product production.

The chemical producers listed in the SRI directory often produced several chemicals. Specific plants were selected for their production of only the chemical of interest of a small number of related products, thus minimizing the need for extensive allocation of the individual TRI facility emissions. Phosgene and sodium cyanide could be taken directly from the combination of the SRI/TRI data.

Hydrogen is produced from propane feedstock or as a co-product of chlorine/sodium hydroxide production. Analysis of the chlorine/sodium hydroxide manufacturing process required allocation of the emissions on a mass basis, thus allocating only a fraction of the emissions directly to the hydrogen production.

Adiponitrile and hexamethylenediamine production was more complicated in the selection of a plant to analyze and calculate the allocation of the emission streams. An analysis was performed on the SRI data to determine the relevant chemicals to the adiponitrile and hexamethylenediamine production processes and eliminate the unrelated process streams. TRI reportable releases were allocated on a mass basis to the appropriate process scheme.

Three of the butylated organic chemicals were analyzed together from the SRI/TRI data due to the close interlinkage of the processes as butyl aldehyde is a feedstock for the butyl alcohol process and butyl alcohol is a feedstock for the butyl acetate process with the addition of glacial acetic acid. The results were compared with the data existing in the model for completeness and consistency.

Several of the chemicals did not have production data to allow for proper emissions allocation on a per pound basis (e.g., sodium dichromate) and some of the organic chemicals were made in plants producing such a tremendous variety of chemicals that allocation would require an extensive understanding of the specific facility (e.g., methyl isoamyl ketone produced by Tennessee Eastman).

In addition, no emissions data were obtained for the production of isopropyl alcohol and butylcellosolve. Thus, the LCI data exclude emissions from manufacturing of these four chemicals.

Several chemicals were referenced in the *Merck Index* (Merck, 1983) and Aldrich Chemical Company's (Aldrich, 1992) *Catalog Handbook of Fine Chemicals* to other literature references. Energy requirements and emissions for the pigments cobalt chromite green and magnesium ferrite proved difficult. Data obtained could not be fit into the model. Cobalt chromite green was referenced by Merck (1983) to Gmelin's (1932 and 1961) *Handbook of Inorganic Chemistry*, printed in German. The process description indicated that airborne pollutants were the most common, but did not quantify the individual chemical pollutants which would then pass through various modern emission control devices.

Chemicals often may be manufactured in several ways. It was assumed the process diagrams (Appendix A) represented the typical method of manufacture of a given chemical and did not necessarily represent the documented process for each chemical in the CARC production process. Whenever possible, this same production methodology was utilized by examining the most common commercial production method(s). One exception was in the production of hydrogen, which in order to obtain readily separable data, used a caustic soda production process in which hydrogen is a co-product rather than the more common hydrocarbon derivation.

2.5 LCI Functional Unit

One of the first requirements during scoping activities for an LCA is the selection of a functional unit, so that resource use, energy use, and environmental releases from different life-cycle stages, or for different alternatives, can be expressed in the same units for comparative purposes. For the draft LCI, the functional unit selected was 1,000 gallons of CARC used. Paint application and depainting data were developed in units per 1,000 gallons of CARC used, which is slightly less than CARC produced due to spills and discarded old paint.

As part of the revisions and enhancements to the LCI data, this functional unit was reevaluated. Since the important requirement for any type of paint is the amount of materials (e.g., primer, thinner, and topcoat) required to produce a good finish over a specific area, 1,000 square feet (ft²) was selected as the appropriate functional unit. Thus, quantities of materials required or emissions released from any process in the CARC life cycle are expressed relative to a functional unit of 1,000 ft² of painted surface. In the LCImA all alternatives are compared on an equivalent functional unit basis with adjustments made to the amounts of material, labor, and capital associated with each option required to paint one functional unit of surface.

2.6 LCI Data

The revised baseline LCI results are provided in Appendix C. The tables in this appendix are organized by the following inputs and outputs to the CARC life cycle: Resource and Energy Consumption, Air Emissions, Wastewater Emissions, and Solid Wastes. The totals for each resource or emission are further divided by (1) Raw Material Extraction plus Materials Manufacture Stages and (2) Use/Reuse/Maintenance Stage plus Disposal (depainting/painting activities at Fort Eustis). All data are reported in the quantity per functional unit (1,000 ft² of CARC painted surface). These LCI data are the basis for the LCIA and LCIMA results.

3.0 Parameters Evaluated

3.1 Inventory Analysis

The inventory analysis used for the LCI consists of the inventory for the baseline CARC system and the inventories for each of the five alternatives. The percent compositions of the baseline topcoat, baseline and alternative primers, and baseline and alternative thinners are listed in Tables 3-1, 3-2, and 3-3.

Table 3-1. Percent Composition of Baseline CARC Topcoat

CHEMICAL CONSTITUENTS	MIL-C-53039A (Hentzen 383 Green Zenthane, 08605GUZ-GD) (%)
Methyl Isoamyl Ketone	23.8
Magnesium Ferrite Pigment	3.9
Aromatic Hydrocarbons ^(a)	1.5
Butyl Acetate	1.2
VM&P Naptha	4.8
Xylene	2.0
Cobalt Chromite Green Spinel Pigment	3.9
Trivalent Chrome	6.9
Hexamethylene Diisocyanate	26.0
Diatomaceous Silica Pigment	26.0
TOTAL	100

⁽a) Mix of C8s to C10s

Table 3-2. Percent Composition of Baseline and Alternative Primers

CHEMICAL	BASE (Niles ^(a) , 2-part epox		ALTERNATIVE (Deft, 2-part epoxy, water thinned)			
CONSTITUENTS	53022A, 4-part ^(b) (%)	53022B, 1- part (%)	53030A, 4- part ^(b) (%)	53030B, 1- part (%)		
Epoxy resin solids	22	23	16.03	71.17		
Proprietary ingredients		2	0.10	0.06		
TiO₂(c)	20		33.96			
Extenders (Pigment)(c)	18		27.85			
Xylene		11				
n-Butyl Acetate	26					
мівк	2	28				
Zinc Phosphate	4			,		
Diethylenetriamine	·	8				
2-Ethoxyethanol		11	·			
n-Butyl Alcohol	8	17	10.83			
Aromatic hydrocarbon	Aromatic hydrocarbon		11.26	4.13		
Nitroethane				24.64		
TOTAL	100	100	100	100		

⁽a) Niles does not manufacture Mil-P-53030

⁽b) Note: The 4:1 mixture has not been pro-rated

 $^{^{(}c)}$ MSDS reports 38% proprietary ingredients, which were assumed to be divided between ${\rm TiO_2}$ and pigment extenders, respectively, as 20% and 18%.

Table 3-3. Percent Composition of Baseline and Alternative Thinners

CHEMICAL CONSTITUENTS	BASELINE (CSD ^(a) designed for thinning aircraft coating, Mil-T-81772B) (%)	ALTERNATIVE (CSD designed for thinning dope and cellulose nitrate lacquer, Fed Std A-A-857B) (%)
MEK	30.5	12
Hexyl acetate mixed isomers	41.0	
Isobutyl acetate		31
Toluene	10.5	12
n-butyl acetate	11	
Xylenes	7.0	
Aliphatic petroleum distillates		16
n-butyl alcohol		11
Isopropyl alcohol		18
TOTALS	100	100

⁽a) CSD = Chemical Specialists & Development

As noted from the composition listings, most of the ingredients of the primer and thinner are qualitatively similar between the baseline and alternative formulations, with the differences arising in the amounts of each used. Exceptions are the use of nitromethane in the primer and the substitution of different members of the same class of compound (e.g. isobutyl instead of hexyl acetate in the thinner). Each of the differences was carried through the inventory analysis by creating new data modules where necessary or modifying others.

Inventories for each of the alternatives were constructed by modifying the baseline inventory to account for both differences in the type of ingredients and in the proportions of ingredients in the alternative primer and thinner as well as the changes in the transfer efficiency associated with the alternative spray gun. The resulting alternatives are also described below.

In general, preparing the inventory analysis for the alternative primer and thinner options consisted of a two-step process. The first step consisted of replacing certain data modules in the baseline inventory with those appropriate to the alternative formulations followed by adjustment of those modules that were qualitatively similar but proportionately different. In the case of the options involving the alternative gun, a further adjustment (decrease) was made in the overall amount of materials used to coat a functional unit area.

The only additional ingredient for which completely new data modules were required for the alternative primer was nitromethane. The MSDS for the alternative primer also listed aromatic hydrocarbons in distinction to the xylene shown for the baseline. However, because of the manner in which the refinery operations producing the aromatics occur, this distinction is not critical for the inventory. Further commentary on this issue regarding its effect on the impact assessment is

discussed below. Additional data modules required for the thinner were isobutyl acetate, n-butyl alcohol, isobutyl alcohol, and aliphatic hydrocarbons. Of these, only the isobutyl acetate and aliphatic hydrocarbons are not ingredients anywhere in the baseline system. The isobutyl acetate is produced using the same chemical operations (Oxo process) as the n-butyl acetate in the baseline primer and therefore employed the same data sources and allocation procedures. Aliphatic hydrocarbons data were derived from Battelle's refinery module. In general, data necessary for preparing the inventory of the new chemical ingredients (and their precursors back to the raw materials) were collected in much the same manner and using primarily the same sources as those described for the baseline case.

3.2 Environmental Impact/Hazard Assessment

An LCIA (as defined by SETAC, 1993) involves the examination of potential and actual environmental and human health effects related to the use of resources (energy and materials) and environmental releases. An LCIA is divided into the following two stages: classification and characterization. In instances where the purpose of an LCA is the assessment of the current system (i.e., a baseline analysis) a valuation phase may logically be included in the LCIA (or optionally, as was done here, may be part of interpretation). Also, a normalization stage, which compares the contributed potential impact of the system under investigation to the overall environmental problem magnitude, may be added after characterization to place the system-level results in perspective relative to the regional, national, or global perspective of the impact. In order to compare the potential environmental impacts of each alternative with the baseline conditions, an LCIA was conducted on each alternative in the same fashion as the baseline.

Classification was conducted after scoping and is the process of linking or assigning data from the LCI (Hendricks et al., 1995) to individual stressor categories within the three major stressor categories of human health, ecological health, and resource depletion. This process included creation of complex stressor/impact chains because a single pollutant can have multiple impacts, and a primary impact can result in secondary (or greater) impacts as one impact results in another along the cascading impact chain.

Characterization involved the analysis and estimation of the magnitude of impacts for each of the stressor categories by multiplying equivalency factors times the quantity of a resource or pollutant associated with a functional unit of CARC. The equivalency analysis approach functions by converting a larger number of individual inventory items within a homogeneous inventory category into a single value expressed as an amount of a reference material. The procedure generally involves multiplying the appropriate equivalency factor by the quantity of a resource or pollutant associated with a functional unit of CARC and summing over all of the items in a classification category. Finally, valuation involved assigning relative values or weights to different impacts, so they can be integrated across impact categories for use by decision makers. The valuation method used in this study is known as the Analytical Hierarchy Process (AHP). AHP is a methodology for supporting decisions based on relative preferences (perceptions of importance) of pertinent factors. Preferences were expressed pairwise in a structured manner supported by a software package known as Expert Choice (EC). For the LCImA, the characterization involved the analysis and estimation of the magnitude of the potential for each CARC system alternative to contribute to impacts in each of the stressor categories.

Five levels of analysis have been suggested by SETAC for assessing the potential human health and ecological impacts of chemical releases associated with the life cycle of a product (SETAC, 1993). These five levels of impact analysis in increasing level of complexity, effort, and site-specificity can be grouped as site-independent or site-dependent. The LCIA approach used in this report focuses on a combination of the Level 2 and Level 3, site-independent approaches discussed below:

- Level 2 Equivalency Assessment (data aggregated according to equivalency factors for individual impacts [e.g., ozone-depletion potential or acidification potential]; assumption is that less of the chemicals with the greatest impact potential is better)
- Level 3 Toxicity, Persistence, and Bioaccumulation Potential (data are grouped based on physical, chemical, and toxicological properties of chemicals that determine exposure and type of effect; assumption is that less of the chemicals with the greatest impact potential is better).

3.2.1 Classification and Stressor/Impact Chains

The classification phase involved linking or assigning data from the LCI to individual stressor categories within the three major stressor categories of human health, ecological health, and resource depletion. Stressor/impact chains were developed by considering the energy, water, and raw material inputs to each life-cycle stage, as well as the air, water and solid waste emission outputs from each life-cycle stage. The inputs and outputs were then compared against lists of potential impacts (e.g., SETAC, 1993 and Heijungs, 1992a and 1992b), in order to develop stressor/impact chains.

3.2.2 Characterization

The characterization phase involved a site-independent evaluation of the magnitude of potential impacts caused by individual stressors. For chemical stressors, this took the form of a Level 2 and/or Level 3 assessment of the physical and chemical properties of each chemical to determine the potential hazard of that chemical.

For the Level 2 evaluation, a limited subset of the chemicals identified during the LCI had already been assigned impact equivalency units in published documents. Examples of groups of chemicals that have been evaluated for impact equivalency include nutrients, global warming gases, ozone depletion gases, acidification potential chemicals, and photochemical oxidant precursors (Heijungs, 1992a; Nordic Council, 1992).

New impact equivalency units were created for some chemicals identified in the baseline or alternative LCIs, by a modification of the Level 3 Toxicity, Persistence, and Bioaccumulation Potential Approach, by adapting the hazard ranking approach described in an EPA (1994) report. This included evaluation of impacts (e.g., toxicity to humans, fish, or wildlife) other than the impacts evaluated in Level 2, although a few chemicals with multiple impacts were evaluated by both the Level 2 and 3 approaches. Some data were obtained from the EPA (1994) report, which described a method for ranking and scoring chemicals by potential human health and environmental impacts. Toxicity or persistence data for chemicals not included in the EPA (1994) chemical ranking report were obtained from electronic non-bibliographic databases available through the Medical Literature and Analysis Retrieval System (MEDLARS) or Chemical Information Systems (CIS) clearinghouses. The MEDLARS clearinghouse is available through the National Library of Medicine and contains databases such as Registry of Toxic Effects of Chemical Substances (RTECS), Hazardous Substances Databank (HSDB), and Integrated Risk Information System (IRIS). The CIS clearinghouse is available from Chemical Information Systems and contains databases such as AQUIRE and ENVIROFATE. Toxicity data are available for humans and standard laboratory animals from IRIS, RTECS, and HSDB. AQUIRE contains data on toxicity of chemicals to aquatic animals.

Evaluation of the magnitude of resource depletion impacts associated with the life-cycle of CARC started with the resource use inventory information from the LCI (Hendricks et al, 1995). Resources included in the analysis involved both flow resources, such as water, and stock resources, such as minerals, primary energy sources (e.g., gas, oil, coal), and land. These impacts were evaluated from a sustainability (time-metric standpoint), which considers the time to

exhaustion of the resource. Information on the world reserve base and production of minerals came from various U.S. Bureau of Mines publications. Information for energy sources came from the Energy Information Administration, U.S. Department of Energy.

3.2.3 Key Assumptions for LCIAs

Key assumptions regarding the LCIAs for the baseline and each alternative include the following:

- Evaluation of the primary impact for a particular impact category is assumed to be a good indicator of the true impact of concern, which is typically further down the stressor/impact chain (e.g., an increase in the acid precipitation potential is a good indicator of the loss of aquatic biodiversity, including sport fishing).
- The generic hazard evaluation criteria discussed in Section 4 are assumed to be useful
 indicators of the general impact potential and incorporate some of the factors dictating the
 magnitude of site-specific impacts (e.g., the criteria for human, terrestrial, and aquatic
 toxicity include consideration of chemical toxicity and persistence). However, the exposure
 dose and existing environmental conditions cannot be evaluated without site-specific
 modeling.
- The fact that equivalency factor information was not available for a few chemicals (e.g., the
 toxicity or persistence of some chemicals were not in the databases searched) is assumed to
 have an insignificant impact on comparable impact category scores for each of the
 alternatives (i.e., if the information for a particular chemical is missing for the baseline, it
 would also be missing for the alternatives).
- The consequences of having a specific compound in the inventory for one alternative (e.g., xylene) and a class of compounds (e.g., aromatic hydrocarbons) in another was investigated using a sensitivity analysis. By evaluating the chemistry of the contributing operation and/or ingredient group, it was possible to estimate which compound or compounds were likely members of the category. Data for the selected specific compounds were then substituted and the impact equivalencies recomputed to assess the overall effect on the comparison.

3.3 Economic Assessment

3.3.1 Methodology

The annualized costs estimated in this analysis were restricted to internal costs (i.e., cost associated with the Army's depainting and painting operations). These costs were further classified into direct and indirect costs. Direct costs are closely associated with the depainting and painting operations and include expenses related to capital expenditures for building, equipment, renovations, etc., and operating cost such as operating labor, materials, utilities, maintenance, and waste disposal. Indirect costs are costs which are incurred but might be spread across several facilities on base and (as was done in this analysis) included in labor overhead. Examples include items such as regulatory compliance (permitting, reporting, waste handling, waste tracking, training, monitoring and analysis, emergency preparedness, and medical surveillance), waste storage, insurance, penalties and fines, and personal injury and property damage liability.

External costs, for items such as the opportunity cost of the landfill where the waste is disposed (since the site could be put to other uses, some of which might have offered more to society) have not been included in the analysis. The advantage of this approach is that information on direct and indirect internal costs were available from the Army, suppliers, and private industry. Restricting the scope in this manner allowed efforts to be focused on developing data and data analysis.

The annualized cost to depaint and paint Army vehicles was estimated using a factored estimate approach. A base case and five alternative cases (Cases 2 through 6) were evaluated (see Table 1-1). Fort Eustis was selected as the baseline site, so its plant capacity; staffing; and paint, primer, thinner, and abrasive media usage rates were used to estimate typical costs.

The factored estimate costing procedure (Peters and Timmerhaus, 1991) provides a straightforward approach to preparing cost estimates with a medium level of accuracy. Capital costs are typically accurate within ± 40 percent, and operating costs within ± 30 percent. Preparation of a more accurate estimate requires development of a detailed design, complete equipment specification, acquisition of vendor quotes, etc.

Capital Costs

Capital costs were estimated for a facility capable of depainting and painting Army vehicles with CARC paints. At Fort Eustis, 3,096 gallons (gal) of CARC and 32,000 pounds (lbs) of aluminum oxide were used in 1993. The plant flowsheet is shown in Figure 3-1. Capital costs were estimated for depainting, marking and equipment preparation, primering, and CARC application operations for a new facility. The primary difference in capital costs for the base case and five alternatives was use of an expensive, but more effective "Alternative Gun." The turbine-HVLP gun was capable of significantly higher spray efficiencies (90 percent versus 60 percent level assumed for the baseline gun).

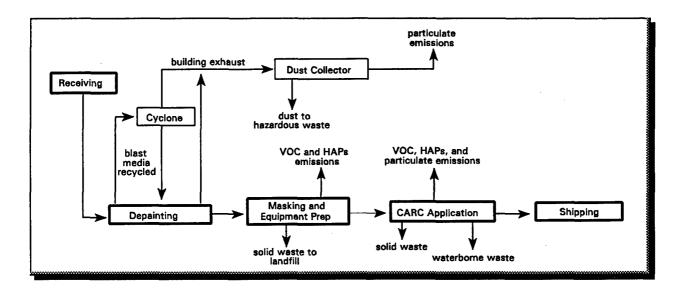


Figure 3-1. CARC application and depainting processes at Fort Eustis (from Hendricks, et al., 1995).

The factored estimate approach to estimating capital costs starts with purchased equipment. Each major item included in the design is identified, sized, and costed (using cost files, standard texts, vendor quotes, recent purchase information) to estimate the total delivered equipment costs. Then, a series of factors are applied to estimate other costs. The factors depend on the type of plant proposed, (e.g., the factors differ for a solid-solid handling plant versus a solid-liquid, or liquid-liquid facility). The factors for solid-solid processing were felt most appropriate for CARC depainting

and painting. The factors were obtained from a standard engineering-economics text that has been found to provide reasonable estimates of capital costs (Peters and Timmerhaus, 1991).

Operating Costs

Operating costs are composed of the annual costs to operate the depainting and painting operations. They include raw materials, utilities, labor, supplies, maintenance, plant overhead, waste disposal, insurance, and regulatory compliance charges. At Fort Eustis, a team of five operates the depainting facility and a team of eight mans the painting facility. In 1993, 32,000 lbs of aluminum oxide abrasive and 3,096 gal of CARC were used to depaint and paint approximately 480 Army vehicles (Hendricks, et al., 1995; Cavender, et al., 1994).

To estimate operating costs, the quantity of raw materials, utilities, and labor used were estimated based on the experience at Fort Eustis. The effect of the alternative cases on these usage rates were also estimated. Appropriate factors were applied to convert the usage rates to annual costs (i.e., the gallons of CARC used per years were multiplied by the CARC purchase price). Other charges, such as for maintenance, plant overhead, etc, were estimated using factors (e.g., maintenance charges were estimated as a function of the estimated fixed capital investment). These factors were obtained from the same engineering-economics text (Peters and Timmerhaus, 1991).

Annualized Cost

Annualized costs equal the annual operating cost plus amortization of the fixed capital investment (FCI). There are many procedures employed to amortize capital costs. The factor used is usually dependent on the interest rate and time period selected. For this estimate, an annual charge was applied equivalent to making 12 monthly "mortgage" payments, at 6 percent interest over a loan life of 11 years to repay the base case FCI or the alternatives FCIs. The total annualized cost is then computed as:

Operating Cost, \$/yr + Amortization, \$/yr = Annualized cost, \$/yr

This cost was also divided by the annual quantity of CARC painted surface to compute costs on a \$/1000 ft² basis. The annual surface coated (619,000 ft²) was estimated from the 1993 Fort Eustis CARC paint consumption level of 3,096 gallons and a calculated CARC usage rate of 5 gal/1,000 ft² (200 ft²/gal).

3.3.2 Evaluated Parameters

Capital Costs

Depainting

A schematic of the depainting booth at Fort Eustis is presented in Figure 3-2. The depainting building is approximately 24 feet by 36 feet. Operations include receiving the 16-mesh aluminum oxide grit, feeding it to holding pots, and high-pressure air blasting through a nozzle to remove old paint and/or rust from steel substrates. Two induced draft fans are employed to transport paint chips and fine aluminum oxide dust suspended in the air to a series of dust collectors for dust removal. After the initial blasting, most of the media used is still large enough for reuse. This media and paint chips, flakes, masking tape, small pieces of debris, etc. are manually swept into floor grates. Screw conveyors in the grates move the media to a bucket elevator which discharges into a collection hopper. Media is discharged from the hopper and passed through an air stream. The lighter materials are picked up by the air and carried to a cyclone separator to remove the waste materials. The larger, heavier material drops to a storage hopper for reuse.

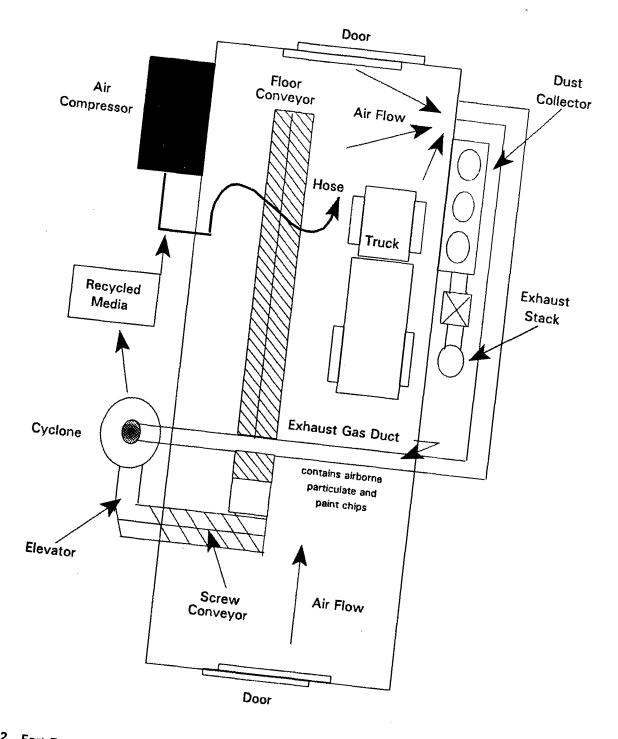


Figure 3-2. Fort Eustis depainting building (Cavender, et al., 1995).

The estimated purchased equipment costs for the depainting totaled \$75,000 for the screw conveyor, cyclone, air wash system, platform, building ventilation blower, air compressor, depainting hoses, nozzles, etc., dust collector, and duct work. The building was estimated separately based on floor space (30 feet by 50 feet) and building type at \$65,000. To these delivered purchased costs, factors described earlier were applied to estimate the direct cost, indirect cost, and fixed capital investment.

Painting

After depainting, the vehicles are hand-wiped with thinner to remove grease and dirt. Once cleaned, the vehicles are hand-masked with tape and paper before being moved into one of two downdraft painting booths.

In the base case, vehicles are first painted with a two-part epoxy primer (MIL-P-53022). The primer is composed of 80 percent part A and 20 percent part B, by volume. The primer is thinned with the base case thinner MIL-T-81772B prior to application. The primer is applied using the base case spray applicator a HVLP gun. The primed surface is allowed to dry for 2 hours before application of CARC. Alternative primers, thinners, and spray guns were also evaluated.

A single component CARC (MIL-C-53039A), Hentzen 08605 GUZ-GD, 1-part urethane, is applied using the base case applicator a HVLP gun. Prior to application the CARC is mixed with thinner to achieve the desired viscosity and drying time. After painting, the guns and hoses are cleaned with thinner at the end of each shift. The waste thinner is collected, allowed to settle, and reused. The collected sludge is disposed as hazardous waste. An alternative gun was also evaluated. It was assumed that the same type of gun was used for both primer and CARC application.

The purchased equipment costs for the painting operation totaled \$35,000 for the building ventilation blower, duct work, water-wall collection system, and the dust collectors. The base case gun (HVLP) capital costs were estimated at two guns at \$250 each plus \$10,000 for a 30-horsepower (HP) air compressor and associated painting equipment. The cost for the alternative gun, a turbine HVLP gun, was \$20,000 for four guns and all associated equipment. The difference in gun cost was the only significant capital cost difference between the baseline case and the five alternative cases. The building (24 feet by 36 feet) was estimated separately at \$37,000. The factors noted before were applied to estimate FCI. The combined estimated capital cost was \$547,000 for the depainting and painting facilities using the base case HVLP spray applicator, and \$581,000 for the depainting and painting facilities using the alternative gun.

Operating Costs

Numerous assumptions were required to estimate operating costs. Unit costs for raw materials, utilities, labor, and waste disposal are provided below. The raw materials required and their unit costs are provided in Table 3-4. The only utility used in significant quantities was electricity. The unit cost was assumed to be \$0.06/kilowatt (kW-hr). A labor rate of \$25/man-hr was assumed. Supervisory labor and plant overhead charges were estimated as separate items using factors presented earlier.

Disposal costs for waste paint and primer, thinner sludge, etc. were estimated at \$500/drum or \$10/gal. Disposal charges for waste painting materials, tape, paper, filters, etc. were estimated at 100 percent of paint and primer waste disposal charges. Spent blasting media disposal costs were estimated at \$0.58/lb (Mayer, 1994).

Table 3-4. Raw Material Unit Costs

ltem	Description	Price	Reference
Topcoat	MIL-C-53039A, 1-part urethane	\$36.00/gal	Miller, 1994
Base case Primer	MIL-P-53022, 2-part epoxy	\$17.00/gal	Miller, 1994
Alternative Primer	MIL-P-53030, Deft 2-part epoxy	\$20.33/gal	Taylor, 1995
Base case Thinner	MIL-T81772B	\$15.00/gal	Taylor, 1995
Alternative Thinner	Fed. Std. A-A-857B	\$15.00/gal	Taylor, 1995
Abrasive	16-mesh aluminum oxide	\$0.25/lb	Skillen, 1994

Process Related Assumptions

Assumptions on work load, coating thickness, density, percent solids, coating efficiency, waste, dilution, coverage rate, work period, depainting rate and abrasive usage were estimated. These assumptions and information sources are presented in Table 3-5. The required materials for 619,000 ft² painted (primer and topcoat) per year, based on 190 painting days/year at Ft. Eustis were:

- 3,096 gal CARC/yr
- 1,827 gal primer/yr
- 1,627 gal thinner/yr
- 32,970 lb aluminum oxide abrasive/yr, and
- 73,972 lb spent abrasive/yr.

Since power and labor were anticipated to be significant cost factors, they were estimated in detail. Total power requirements were summarized at 94 HP (or HP equivalent) for the following operations:

- · Painting building ventilation
- Painting building lights
- · Painting building heating/air conditioning
- · Air compressor for painting
- · Air compressor for primering
- Depainting building ventilation
- Depainting building lights
- Depainting building heating/air conditioning
- Depainting pneumatic conveying
- Depainting air cleaner blower, and
- Air compressor for depainting blast nozzles.

Use of the alternative gun lowered total power usage to 72 HP. The difference results from the need to use a 30-HP air compressor for the HVLP spray application gun versus 7.5-HP for the alternative gun (turbine HVLP gun) (Bunnell, personal communication, 1995).

Table 3-5. Process Assumptions

ltem	Description	Value	Reference
Workload	Painting 1000 ft²/ day	3.26 1000-ft² units/day	Estimated based on LCI ^(a) 3,096 gal CARC used/yr
Topcoat with HVLP gun	Usage, gal/1000 ft²	5.00 gal/1000 ft ²	Calculated
Topcoat with alternative gun	Usage, gal/1000 ft²	3.66 gal/1000 ft ²	Calculated
Base case primer with HVLP gun	Usage, gal/1000 ft²	2.50 gal/1000 ft ²	Calculated
Alternative primer with HVLP gun	Usage, gal/1000 ft²	2.50 gal/1000 ft ²	Calculated
Base case primer with alternative gun	Usage, gal/1000 ft²	1.805 gal/ 1000 ft ²	Calculated
Alternative primer with alternative gun	Usage, gal/1000 ft²	1.805 gal/ 1000 ft ²	Calculated
Thinner with topcoat - HVLP gun	Usage, gal/1000 ft²	1.625 gal/ 1000 ft²	Calculated
Thinner with topcoat and base case or alternative primer - alternative gun	Usage, gal/1000 ft²	1.625 gal/ 1000 ft ²	Calculated
HVLP gun with topcoat	Coverage, ft ² topcoat/min	2.0 ft²/min	(K. Taylor, Battelle, personal experience)
Alternative gun with topcoat	Coverage, ft ² topcoat/min	3.0 ft²/min	Calculated
HVLP gun with primer	Coverage, ft ² primer/min	2.0 ft²/min	(K. Taylor, Battelle, personal experience)
Alternative gun - base or alt, primer	Coverage, ft ² primer/min	3.0 ft²/min	Calculated
Work factor, minutes painting day	Painting min/day	3,260 min/day	Calculated
Work factor, days painting/year	Painting day/yr	190.0 days/yr	Calculated
HVLP gun for topcoat	Guns required to paint 1000 ft ² topcoat/day	0.2/1000 ft²/day	Calculated
Alternative gun for topcoat	Guns required to paint 1000 ft² topcoat/day	0.13/1000 ft ² /day	Calculated
HVLP gun - base or alternative primer	Guns required to apply primer 1000 ft²/day	0.2/1000 ft²/day	Calculated
Alternative gun for base case primer	Guns required to apply primer 1000 ft²/day	0.13/1000 ft ² /day	Calculated
Alternative gun for alternative primer	Guns required to apply primer 1000 ft²/day	0.10/1000 ft² /day	Calculated
Depainting	Depainting rate, ft²/min	1.1 ft²/min	(Skillen, 1994, p 26)
Existing units average paint thickness	Thickness, mil paint removed	6.9 mil	Calculated
Density of old paint	Density, lb/gal	77.0 lb/ft³	Calculated
Grit usage	Required grit, lb/lb paint removed	0.76 lb/lb paint removed	Calculated from LCI*

⁽a) Hendricks et al. (1995)

⁽b) Cavender et al. (1994)

Base case labor requirements were estimated at 110 man-hr/day for the 3,260 ft² of topcoat applied each working day at Fort Eustis. The rates by application were:

- Depainting (pre-strip preparation, depainting, post strip completion inspection and clean-up):
 41 hours
- Primering (thin primer with thinner, preprimering preparation, apply primer, post primer application inspection and cleaning): 44 hours
- Topcoat (thin topcoat with thinner, apply top coat using HVLP gun, post topcoat application inspection and clean-up): 24 hours

This was reduced to an estimated 96 hours when the more efficient alternative gun was employed. Depainting time naturally stayed the same (41 hours), but preparation and primering dropped to 38 hours and topcoat application, inspection, and cleanup dropped to 17 hours.

3.4 Performance Assessment

The major technology driver for advances in coatings and in application equipment is the reduction of emissions of volatile organic compounds (VOCs). Coatings are currently being formulated that either reduce the level of solvent in the coating (high solids), eliminate the use of solvents (powder coating, 100% reactive-UV curable) or use water as a solvent or co-solvent (waterborne, waterthinned). The application equipment manufacturers are working with coatings manufacturers to allow the use of these reduced VOC coatings. High-solids systems require increased nozzle pressures to provide atomization of the high viscosity materials. Powders coatings require the use of electrostatic equipment which electrically charges the powder to provide an attractive force between the powder and the substrate. Waterborne coatings require the use of stainless systems to prevent corrosion.

At this time there is only one military specification (Mil-C-53039) approved for use as a CARC topcoat for the exterior of vehicles. This is a one-component, moisture-cured, solvent-based polyurethane. High-solids, water-based, and 100% reactive systems are currently being investigated. However, none of these systems are expected to receive approval in the short term according to personnel at Fort Belvoir (U. S. Army Coatings Research Facility) (Duncan, personal communication, 1995). Primers are limited to two military specifications (Mil-P-53022 and Mil-P-53030). Both system are two component epoxy-amine systems. Mil-P-53030 is a water-thinnable formulation.

Other formulations may exist that provide all of the necessary performance characteristics obtained from the currently used systems. However, without available supporting data, these systems can not be explored within the scope of this program.

3.4.1 Application Equipment

Electrostatic guns and HVLP guns are the two most commonly used market advances. Electrostatic guns charge atomized paint particles and use the attractive force of a grounded target to attract and hold the coating particle. This reduces both the amount of bounceback and overspray. Bounceback is due to high momentum particles not having enough attractive force upon impacting a target to inhibit the particle from bouncing off the target. Overspray is due to the turbulence involved in forcing a coating through a gun path toward a target. Both bounceback and overspray are reduced because the attractive force of the target allows for reduced forward pressure from the guns. The HVLP guns reduce the pressure or force on the particles, which reduces the amount of bounceback. However, HVLP guns often require a conversion zone which changes high pressure air into large volumes of low pressure which influences the amount of turbulence and the amount of overspray.

Transfer efficiency is the defining value of the ability of application equipment to minimize overspray and bounceback. Transfer efficiency is measured as the amount of coating that is applied to the surface over the total amount sprayed. Higher transfer efficiencies result in use of less material and thus less VOC release.

While manufacturers strive for increases in transfer efficiencies, the equipment must also continue to impart a quality coating on the target surface. The surface characteristics of the applied film are directly related to the atomization, and velocity of the applied coating particles. The effect of varying levels of atomization and velocities on proper film formation are reviewed in available literature, but will not be discussed in this review. The equipment must also allow for coating at a range of film thicknesses and coverage areas similar to that available from conventional application equipment.

3.4.2 Primers

Primers serve two basic functions which are corrosion protection and as tie layers which aid adhesion of topcoats. The area of corrosion is complex and will not be covered in detail in this discussion, as much literature is available on the subject (Wicks, 1987). However, in general the most common driver is electrochemical corrosion. Electrochemical corrosion is in turn a function of, but not limited to, the following: the type of metals involved, the environmental conditions present including humidity and salt levels, and mechanical stress found in the metal structure.

Adhesion is affected by both the materials used and the condition of the substrate. Most primers considered for use under CARC topcoats on steel consist of two-component, amine-cured, epoxy systems. The amine component is used because of strong hydrogen bonding that occurs with oxides formed on the steel surface. Epoxy-amine systems have been traditionally viewed as having excellent adhesion and hardness. However, they do not have the required environmental and chemical exposure resistance needed to be used as an external CARC topcoat. Therefore, these primers must also be reviewed in terms of the adhesive strength between the primer and a more environmentally durable polyurethane topcoat.

The condition of the substrate is important, because small levels of contaminates such as oils and greases can dramatically reduce the bonding of the primer. Systems with the greatest adhesion are often less dependent upon absolute cleanliness of the substrate and are therefore less susceptible to oversights in surface cleaning.

An additional performance related factor that can be included toward the selection of a primer is the ease of use of the primers. Two component systems require the blending of a base and a catalyst which initiates immediate crosslinking, which in turn results in increases in viscosity. Therefore, the systems must be applied before the reaction of the two components increases the viscosity beyond application limits. This rate of reaction is reported as the cure rate and is often more simply expressed in terms of a system's "pot life". "Pot life" is generally defined as the amount of time elapsed after initial mixing before the viscosity of the system doubles. The ease of cleanup of the primers can also be considered. Systems that require extensive use of solvents to clean gun lines require more effort than those that can be cleaned using water.

3.4.3 Thinners

There are three major factors associated with the selection of a solvent or thinner. The first is the solubility of the solute (i.e., the paint and/or resin) by the solvent. This factor is based on the compatibility of the solute and the solvent, which is demonstrated as the ability of the solute and the solvent to form a homogenous solution and it is often referred to in terms of the solubility parameter. The second factor is the viscosity reduction introduced by the addition of the solvent. The first two factors are related as the solvency of the thinner. Solvency is generally dominated by

the viscosity of the solvent when low concentrations of resin are present. When higher concentrations of resin are introduced, then the solubility factor dominates the overall viscosity. However, the amount of thinner required to thin the paint and or primer are more commonly considered by end users than the individual contributions of solvency. The final factor is the evaporation rate of the resin and its affect on film formation. "If solvent evaporation is too fast, the film will not level nor wet the substrate well enough for good adhesion. If the solvent evaporation is too slow, the film will sag and perhaps become too thin. If solvent composition changes during evaporation, precipitation of the resin can occur, and the film will have no integrity" (Ellis, 1986). It is the effect of the evaporation rate on the film forming characteristics of the coating that are of primary concern and of which the most informative data can be obtained.

One additional factor that can also be considered is the level of purity of the thinners. Thinners with significant levels of contaminates such as water or solid particulates can affect the film characteristics of the coating.

3.4.4 Application Equipment Evaluation Parameters

Surface quality and transfer efficiency were selected as the two evaluation parameters. The ability of the application equipment to provide sufficient atomization and desired thickness levels and coverage areas were not chosen as evaluation parameters due to information provided by equipment manufacturers stating that these issues could be ignored assuming the proper selection of nozzles and tips.

Surface Quality

The ability of the application equipment to effectively apply CARC was ranked according to the surface quality of the applied coating. An acceptable finish is one with no visible application induced surface blemishes (e.g., orange peel, blistering). Data were obtained from published literature. Results were ranked in terms of acceptable and not acceptable, as follows:

- 2: Acceptable: No visible application induced surface blemishes
- 1: Not Acceptable: Noticeable surface blemishes requiring significant reformulation efforts such as addition of thinners, or surfactants.

Transfer Efficiency

Transfer efficiency (TE) was rated by definition as the percentage of paint applied to the target divided by the total paint sprayed. Data were obtained from published literature and communications with users. Results were reported from 0-100 percent, and were ranked as follows:

- 4: TE for alternative > 20% + TE for baseline
- 3: TE for alternative > (10% to 20%) + TE for baseline
- 2: TE for alternative > (0% to 10%) + TE for baseline
- 1: TE for alternative < TE for baseline

The evaluation parameters Surface Quality and TE are weighted 2-1, respectively.

3.4.5 Primer Evaluation Parameters

The two major issues of primers are corrosion inhibition and adhesion. Cure rate was also identified as a possible selection parameter in the methodology section. Unfortunately, a lack of data for primers is available in terms of corrosion inhibition. However, as stated in the assumptions, the reviewed primers have all met military specification approval and thus are assumed to provide sufficient corrosion inhibition.

Adhesion is reviewed in terms of the level of cleaning of the substrate required for acceptable adhesion. Adhesion of the primer and the topcoat can also be affected by changes in environmental conditions and will thus be reviewed separately. Cure rate and ease of cleanup will be reviewed in respect to the impact on the painting schedule and the level of effort required.

Effect of Temperature and Humidity

Adhesion of the primer to the substrate and also the adhesion of the topcoat to the primer can be affected by differences in environmental conditions. Data were obtained from personal interviews with users. The level of impact of changes in temperature and humidity were reviewed, and the effect of each criterion was ranked according to the following scale:

Changes in humidity and temperature have:

- 4: No observable impact
- 3: Minimal impact not seen as having practical significance
- 2: Noticeable impact
- 1: Critical impact

Cure Rate

The rate of viscosity increase can induce limitations on the amount of primer that can be mixed at a given time if the cure rate is too fast. This results in an increase in time spent preparing the primer and also in maintaining flow in the application lines. Cure rates that are too slow can result in increased down time due to required waiting periods between coats.

The impact of the primer cure rate was reviewed. Data were obtained from personal interviews with users. Results were reported in terms of the following scale:

- 4: Cure rate had no effect on the painting schedule
- 3: Cure rate had minimal effect on the painting schedule
- 2: Cure rate had dramatic effect on the painting schedule
- 1: Cure rate had unacceptable effect on the painting schedule

Surface Pretreatment Requirements

The level of cleaning of the surface to be coated with primer was reviewed. Data were obtained from personal interviews with users. Results were reported in terms of the following scale:

- 4: no cleaning was required
- 3: minimal cleaning with dry rag required
- 2: minimal cleaning with solvent rag required
- 1: repeated cleaning with solvent rag required

Ease of Cleanup of the Primer

Primers were ranked in terms of ease of cleanup. Those that are easily thinned increase the ease of cleanup, which results in a decrease in time spent and in the use solvents. Data were obtained from personal interviews with users. Results were reported in terms of the following scale:

- 4: no effort required for cleanup
- 3: minimal effort required for cleanup
- 2: moderate effort required for cleanup
- 1: extreme effort required for cleanup

The evaluation parameters Effect of Temperature and Humidity, Cure Rate, Surface Pretreatment Requirements, and Ease of Cleanup of the Primer Changes are weighted 3-1-1-1, respectively.

3.4.6 Thinner Evaluation Parameters

Thinning Ratio or Thinner Effectiveness

Thinners were evaluated based on the percentage of thinner needed to dilute CARC to within sprayable viscosity limits. Data were obtained from personal interviews with users. Results were ranked as follows:

4: Thinning ratio for alternative > (50%) reduction

3: Thinning ratio for alternative > (25% to 50%) reduction

2: Thinning ratio for alternative \geq (0% to 25%) reduction or no change

1: Thinning ratio for alternative > (0% to 25%) increase

Thus, the score for the baseline is 2.

Film Characteristics

Thinners were also ranked according to the ability of the thinner to provide an acceptable finish. Thinners that evaporate too slowly or too quickly can cause undesirable surface defects such as sagging or running and blushing, popping, and orange peel. Data were obtained from personal interviews with users. Results were reported in terms of level of surface flaws as follows:

- 4: No noticeable blemishes
- 3: Minimal blemishes not believed significant
- 2: Noticeable blemishes bordering acceptability
- 1: Unacceptable level of blemishes

The evaluation parameters Thinning Ratio or Thinner Effectiveness and Film Characteristics are weighted equally.

3.5 Valuation Procedure

Finally, as noted above, valuation involves assigning relative values or weights to different impacts, so they can be integrated across impact categories for use by decision makers. It should be recognized that this is largely a subjective process, albeit one that is informed by knowledge of the nature of the issues involved. The valuation method used in this study is known as the Analytical Hierarchy Process (AHP). AHP is a recognized methodology for supporting decisions based on relative preferences (importance) of pertinent factors (Saaty, 1990).

The AHP process involves a structured description of the hierarchical relationships among the problem elements, beginning with an overall goal statement and working down the branches of the tree through the major and minor decision criteria. Once the decision tree is defined, the actual assignment of the weight factors occurs. In this study, the assignment of weights was done as a group exercise. The advantages of the AHP method include its structured nature and the fact that the valuation process does not deal with the entire set of criteria at one time, an effort that would be overwhelming. Rather, preferences are expressed by the team in a pair-wise manner supported by a software package known as Expert Choice™ (EC). The four member team was asked to reach a consensus on the weight factors prior to their being entered into the model. Although divergences of preference could in principle be retained as separate sets of criteria, it was felt that for this application, a single internally consistent process would lead to clearer understanding of how the implementation of the results should proceed.

One of the key assumptions in applying the AHP method is that the environmental, cost, and performance perspectives of the four Battelle staff conducting the AHP to determine the assignment of weighting values for comparison of different impact criteria are assumed to be a reasonably good cross section of the views held by similar stakeholders in the decision process. Because the four staff included one cost engineer, one paints/coatings specialist, a civil engineer and an ecologist, we believe that the mix (and the resulting weights) are reasonable. Facility/production engineers and other "non-environmental" staff within the Army, however, may have derived somewhat different weight values.

4.0 Description and Screening of Improvement Options

4.1 Alternatives Identified/Selected

The scoping process conducted for the baseline and alternatives was designed to identify candidate improvement options that could be evaluated and implemented with a moderate amount of effort and within a reasonable timeframe. It was therefore determined that options requiring large changes in technology or overcoming major institutional barriers, for example, a modification to the MIL-SPEC, a significant change in Army purchasing practices, or a major capital acquisition, would not be included in the suite of candidate systems even though these might, in the long run, be very much better environmentally than those considered. The five alternatives selected (see Table 1-1) represent a mix of evolutionary, directional changes in paints and technology that individually and in combination represent an incremental improvement potential in the areas most directly affecting the environmental profile as determined by the baseline analysis.

Three of the alternatives consider the use of an alternative primer consisting of a water-thinned rather than a solvent-thinned formulation. Although primarily expected to reduce VOC releases during the painting operation, this substitution also offers potential changes in the entire life-cycle of the primer manufacture, use, and disposal. This alternative material is also combined with an alternative thinner in one scenario and with an alternative spray gun in another. The alternative thinner would be anticipated to offer further directional improvements in chemical emissions and the alternative gun application of both more paint on the surface as well as greater labor efficiency. Finally, the alternative thinner and gun systems can be used independently of the alternative primer, although any additive benefits (or costs) would not occur. The following section presents and discusses the factors comprising the improvement assessment process in each of the three target assessment areas.

4.2 Environmental Impact/Hazard Classification

Based on a scoping process using the LCI data that was revised and updated for the baseline and alternatives, and a review of stressor/impact chains for all resources used, and environmental releases from, the entire CARC life cycle, nine major environmental impact categories were selected for the streamlined LCIA described in this report. These nine impact categories include:

- · photochemical oxidant creation potential (POCP; also called smog formation potential),
- · ozone depletion potential (ODP; stratospheric ozone depletion),
- acidification potential (AP; acid rain/fog),
- · global warming potential (GWP; also called greenhouse effect potential),
- human health inhalation toxicity (acute inhalation toxicity),
- terrestrial toxicity (acute oral wildlife toxicity),
- · aquatic toxicity (acute fish toxicity),
- · land use (for solid waste disposal), and
- natural resource depletion (including fossil fuels and minerals).

Stressor/impact networks for these nine major impacts are shown in Table 4-1. This table shows the secondary, tertiary, and quaternary impacts that can result from the primary impact used

in the impact equivalency calculations. Thus, impacts to human health can result from several of these major impact categories (e.g., inhalation toxicity, smog formation, and ozone depletion). The potential for both positive and negative impacts were viewed from a global perspective. For example, global warming may increase food production in some areas (e.g., cold climates) and decrease food production in other areas (e.g., warm climates). Where the global net difference in positive and negative change for a single impact criterion was not clear, both types of impacts were listed for that criterion. Although other minor impacts are associated with the CARC life cycle, these major impact categories were expected to show significant differences between the alternatives to the base case selected for this LCImA. Many of the impacts selected for analysis were also identified in a document by Inform, Inc. titled "Stirring Up Innovation: Environmental Improvements in Paints and Adhesives" (Young et al., 1994). The Inform study was conducted with the cooperation of major paint manufacturing companies.

Table 4-1. Stressor/Impact Networks for Impacts of Primary Concern in CARC Life Cycle

Stressors	Primary Impact	Secondary Impact	Tertiary Impact	Quaternary Impact
CO2	Global warming	Polar melt	Flooding/land loss	
Carbon tetrachloride		Soil moisture loss	Lower food production	
Trichloroethane		Longer season	More food production	
		Forest loss/change	Decreases biodiversity and forest production	
	·	Change in wind and ocean patterns		
SO _x NO _x Ammonia Hydrochloric acid	Acid rain/fog	Building corrosion	Loss of infrastructure, loss of heritage resouces	
		Water quality (acidification)	Decreased aquatic biota reproduction and populations	Decreased biodiversity, decreased recreational and commercial fishing, decrease in water birds
		Vegetation effects	Agricultrual and terrestrial productivity effects	
		Soil effects	Vegetation effects	Agricultural and terrestrial productivity effects
VOCs Acetaldehyde	Ground-level ozone (smog) creaton by	Decreased visibility		
Toluene Benzene	photochemical oxidants	Eye irritation		
n-Butane n-Octane n-Butyl Acetate Chloroform		Respiratory tract problems and lung irritation	Morbidity	
etc.		Vegetation damage	Decreased agricultural / terrestrial productivity	

Table 4-1. Stressor/Impact Networks for Impacts of Primary Concern in CARC Life Cycle (continued)

Stressors	Primary Impact	Secondary Impact	Tertiary Impact	Quaternary Impact
Ammonia Fluorine Xylene Chlorine Vinyl Chloride Phenol CO, etc.	Human health and inhalation toxicity	Morbidity or mortality		
Heavy Metals (Arsenic, cadmium, chromium, mercury) Ammonia Benzene Hydrochloric acid Phenol Sulfuric acid, etc.	Aquatic biota toxicity	Decreased aquatic plant and insect production and biodiversity	Decreased commercial or recreational fishing	
Coal use Iron ore use Magnsium ore use Petroleum use Thallium use Titanium use Water use Zinc use, etc.	Resource depletion	Resources unavailable for future generations		
Heavy Metals (Arsenic, cadmium, chromium, lead) Formaldehyde Sulfuric acid Hydrogen cyanide	Terrestrial animal toxicity	Decreased production and biodiversity	Decreased wildlife for hunting or viewing	
Carbon tetrachloride Trichloroethane	Stratospheric ozone depletion	Increased ultraviolet radiation penetration of Earth's atmosphere	Increased incidence of human skin cancer and ecosystem effects	
Bottom ash FGD solids Fly ash Hazardous waste Plutonium Slag Solid waste Uranium	Land use for disposal	Loss of terrestrial habitat for wildlife Decreased landfill space		

In order to combine data on individual chemicals or resources within an impact category, it was necessary to select existing, or develop new, impact equivalency factors as recommended by SETAC (1993) for a Level 2/3 LCIA. The equivalency factors for each impact category are listed in Table 4-2. The equivalency factors for POCP, AP, GWP, and ODP were taken from Heijungs et al. (1992b); the derivation of these factors is described in a companion document (Heijungs et al., 1992a). The general approach for calculation of equivalency factors for the three toxicity impact criteria was modified from an EPA (1994) document prepared by the University of Tennessee. Details for determining the equivalency factors for the three toxicity criteria, land use, and resource depletion are discussed below.

Table 4.2. Chemical Equivalency Factors for Major Impact Categories Associated with CARC LCA

					HU MUAI ATION	Traproteit			
CHEMICAL NAME	POCP*	ODP	**QV	CWD***	VEICIVOE	TOWOLD	AGUATIC	LAND	RESOURCE
ACETALDEHYDE	0.527			5		IOVICITY	IOXICITY	USE	DEPLETION
	0.02.7					3.255			
	1977								
ACCIONING						0.61	0		
ALDEHTUES	0.443				ΑN				
ALIPHATIC PETROLEUM DISTILATES									
ALUMINUM					15.6	0			
AMMONIA			1.88		5.7	0 03	24.04		
AROMATIC HYDROCARBONS (C8-C10)	0.761				ΔN	20.6	21.03		
AROMATIC SOLVENT	0.761				2				
ARSENIC						0E 70			
BAUXITE						31./3	18.75		
BENZENE	0 189								4
BORON	231.5				¥2	0	14.07		
BOTTOM ASH							0		
BITANE (n-)	0.44							2	
BITANE (iso-)	14.0				17.5				
BITVI ACETATE (A.)	0.513				Y V				
BITY A COUNTAINS	0.323				8.49	0			
BUILL ALCOHOL (BUIANOL)	0.196				0.95	6.18	0		
BUILL CELLUSULVE					12.29	7.59			
BUIYLENE OXIDE, 1,2-					¥	161	ΑN		
CAUMIUM					2.25	21.03	36.25		
CARBON TETRACHLORIDE		1.08		1300	7.06	171	4.2		
CHLORIDE							VIV		
CHLORINE					22 05	0	300		
CHLOROFORM	0.021				2.57	6 16	22.0		
CHROME OXIDE					3	2	9.73		
CHROMIUM, TRIVALENT					0	19.29	16.63		2
00					4.47	27.0	20.02		
C02				-	A'A				
COAL									
COBALT COMPOUNDS						20.96	34.75		6
COBALT OXIDE						20.04	01.10		
COPPER COMPOUNDS					0	12	30		2
CUMENE					1.35	271	3		
CYCLOPARAFFINS, C-/					NA				
CYCLOPARAFFINS, C-8					NA A				
DICTLOROUPLOCROME I HANE (CFC-12)		-		7100	0	1.33	Ą		
FTHANE	000					5.27			
	0.082				Ϋ́Z				
ETHYL BENZENE	0.593				3.19	0			
EIHYL CHLORIDE					0				
ETHYLENE	-				0	0			
ETHYLENE DICHLORIDE					7.32	4 89			
FGD SOLIDS								2	
FLY ASH								2	
FLUORINE					14.64			7	
FORMALDEHYDE					15.6	12.6			
HAZARDOUS WASTE								6	
HEAVY AROMATIC					NA			7	
HEP I ANE (n-)	0.529				0	9.5			

Table 4.2. Chemical Equivalency Factors for Major Impact Categories Associated with CARC LCA (continued)

					HH INHA! ATION	TERRESTRIAI	ACITATION AT IN	CINA	DESCRIBUE
CHEMICAL NAME	POCP*	dQO	AP**	GWP***	TOXICITY	TOXICITY	TOXICITY	USE	DEPLETION
HEXYL ACETATE					1 1	0			
			装を与った。						
HEXANE (n-)	0.421					0			
HYDROCHLORIC ACID			0.88		14.82	5.74	13.86		
HYDROGEN CYANIDE					30	30			
IRON						0	25		
IRON ORE									3
ISOBUTYL ACETATE	0.332								
ISOBUTYRALDEHYDE					1.86	1.86			
ISOPROPYL ALCOHOL					0	0.95			
KEROSENE						0			
LEAD					NA	5.75	25		
LIMESTONE									
MAGNESIUM ORE									
MAGNETITE									
MANGANESE ACETATE									
MERCURY							37.5		
METHANE	0.007				ΑN				
METHANOL	0.123				0	0	0		
METHOXYPROPANOL ACETATE									
METHYL ETHYL KETONE	0.473				1.4	1.86			
METHYL ISOAMYL KETONE	0.326				4	2.05	10.2		
METHYL ISOBUTYL KETONE	0.326				2.33	2.79			
METHYL PROPYL KETONE	0.326				NA	4.57			
NAPTHA, NM&P					NA NA				
NAPHTHALENE					26.45	3.17	19.57		
NATURAL GAS									4
NOX			0.7		NA				
NITRIC ACID					26.4	10.2	15.6		
NITROETHANE					NA				
NITROPROPANE, 2-					14.4	8.4	23.4		
OCIANE (n-)	0.493				0				
OBCANIC ACIDS							¥.		
DENTANE (n-)	0.408				AN 64		₹		
PETROLEUM (CRUDE OIL)	2				\$0.01		NIA		
PHENOL					22.33	7.6	114		7
PHOSGENE					12.5				
PHOSPHATE ROCK									3
PHOSPHORIC ACID					30	5.4	11.4		
PLUTONIUM (FISSILE & NONFISSILE)								¥	
PW C					Ϋ́				
PM-IŲ	47				AN				
DDODY ACETATE	0.42				A S				
DRODYI ENE	0.210				NA	0.87			
SI AG	3							,	
SODA ASH							+	7	
SODIUM							ΑN		-
SODIUM CHLORIDE							5		-

Table 4-2. Chermical Equivalency Factors for Major Impact Categories Associated with CARC LCA (continued)

					HH INHALATION	TERRESTRIAL	AQUATIC	I AND	RESOURCE
COLD WAS STE	POCP	ODP	AP**	GWP***	TOXICITY	TOXICITY	TOXICITY	USE	DEPLETION
						-		1.5	
SOO.								THE PROPERTY OF	
SILICA									
SULFIDE									
SULFURIC ACID						9.0	¥.		
SULFUR DIOXIDE						0.0	2		
THALLIUM									
TITANIUM DIOXIDE									4
TOT	0.563								က
	2000				2.04	0			
I KICHLOROE I HANE (METHYL CHLOROFORM)	0.021	0.12		9	5.6	0			
URANIUM (235, 236, 238)						VIV			
VINYL CHLORIDE					18 52	797		₹ Z	3
VOC	0.397				NA NA	70.7			
WATER INPUT									
XYLENE	0.849				2.4	0.50	, ,		¥
ZINC					7.7	0.52	10.24		
						0	20.3		4
* POCP average is for appropriate chemical group to a		Lotongo glochala ata	1						
** Applies to air emissions only		ories, alcorre	કે, લાઉ.)						
*** Applies to air emissions only, factor in far 100									
אליים מון בווויסטוסוים מווא ופריטו ופין וחסי-אי תוופ ספונסם	-Vi uille perio								
NA = Data not available from on-line sources searched.	rched.								

Equivalency factors for human health inhalation toxicity, terrestrial toxicity, and aquatic toxicity used in this LCIA incorporate both toxicity and persistence information (EPA, 1994) as recommended by SETAC (1993) for a Level 3 LCIA. The toxicity data used for each of these three impact criteria were as follows:

- human health inhalation toxicity use the lowest rodent concentration lethal to 50% (LC₅₀) of exposed animals in parts per million (ppm) experimental or structured-activity relationship (SAR) value and convert to a 4-hr acute test basis,
- terrestrial toxicity use the lowest rodent dose lethal to 50% (LD₅₀) of exposed animals in milligrams per kilogram (mg/kg) experimental or SAR value, and
- aquatic toxicity use the lowest fish LC₅₀ in milligrams per liter (mg/l) experimental or quantitative structure-activity relationship (QSAR) value for a 96-hr test.

In each case, the log of the toxicity data was used to establish a toxicity hazard value (HV). The HV was given a 0 or 5, respectively, if it was above or below a threshold value, as indicated in the EPA (1994) chemical ranking document. The HVs for toxicity data between these threshold values were determined from the formulas indicated in the EPA (1994) document. A similar approach was used to obtain the following three measures of persistence: biological oxygen demand (BOD) half-life, hydrolysis half-life, and bioconcentration factor (BCF). The natural log (In) of the BOD and hydrolysis half-lives and the log of the BCF were used with the formulas in the EPA (1994) document to develop HVs from 1 to 2.5. The final equivalency factor for a chemical was based on the formula:

Equivalency Factor = (toxicity HV)(BOD HV + hydrolysis HV + BCF HV)

Thus, the maximum equivalency factor any chemical could have is (5)(2.5 + 2.5 + 2.5) = 37.5.

The equivalency factor for land use was the estimated density of each type of solid waste. Since the LCI data for solid wastes are expressed as weight/functional unit, multiplication of the weight and density gives an indication of the waste volume, and thus, the landfill volume required.

The equivalency factor for resource depletion was sustainability, which can be expressed as the world reserve base of a mineral or fossil fuel divided by the world annual production. The minerals information was obtained from the 1992 Minerals Yearbook: Volume I, Metals and Minerals (U.S. Bureau of Mines, 1992) or from more recent Minerals Commodity Summaries for individual minerals (U.S. Bureau of Mines, 1995a, 1995b, 1995c, 1995d, 1995e, 1995f, 1995g, 1995h, 1995i, 1995j, 1995k). The fuel data was based on U.S. reserves and production, and was obtained from the Energy Information Administration's Annual Energy Review for 1992 (U.S. Department of Energy, 1993). The sustainability value in years for a mineral or fuel was given an equivalency score of 1 to 5 based on the following scoring ranges:

Equivalency	
Score	Sustainability Scoring Ranges (years)
5	< 5
4	5-49
3	50-499
2	500-999
1	≥ 1,000

It should be noted that these scores do not take into account potential technological advancements for economically locating or mining natural resource deposits not currently included in the reserve base. Also, the scores do not consider the influence of increased recycling on

decreasing the demand for remaining reserves (e.g., aluminum recycling reducing the demand for bauxite).

4.3 Economic Assessment

The economic assessment is based on calculation of the cost in dollars for depainting and painting one functional unit (1,000 ft²) at Fort Eustis. The baseline case and the five alternative cases are evaluated. In addition to capital costs the annualized costs (consisting of the annual operating cost and amortization of the capital costs) are assessed. The primary cost components of the annualized costs are as follows:

- Raw Materials (includes topcoat, primer, thinner, and depainting abrasive)
- Utilities (electricity)
- Labor (operating, maintenance, and supervision)
- Operating Supplies
- Maintenance Supplies
- Laboratory Charges
- Plant Overhead
- Waste Disposal
- Insurance
- Regulatory Compliance
- · Annual Operating Cost, and
- Capital Amortization.

4.4 Performance Assessment

In this section, all performance evaluation parameters (see Section 3) have been assigned a ranking system to discriminate between noticeable changes in performance. However, each ranking can include a range of performances. Since the baseline components discussed in this report will be compared to their alternatives in a subsequent report, it is likely that one of the baseline components and an alternative may be viewed to be alike in terms of practical considerations, and thus would fall within a given ranking. In this situation, if one system is believed to be slightly different, written descriptions will be used to describe the subtle differences. These descriptions have not been incorporated into the rankings discussed below.

Each set of evaluation parameters for application equipment, primers, or thinners was weighted in terms of importance. Therefore, a set that is weighted 2-1 would require a change of two ranking categories in the latter evaluation parameter to equal one change of rank in the higher weighted evaluation parameter.

4.4.1 Application Equipment

Initially, the selection of application equipment that does not require thinning of the CARC topcoat was thought to provide the best potential for improvements in reducing emissions without affecting performance. It was theorized that selection of application equipment that uses higher atomization pressure could reduce or eliminate the need for thinning of the CARC topcoat. It was assumed that some loss in transfer efficiency might occur, but that this would be offset by the elimination or reduction in thinner usage.

Unfortunately, due to the nature of the topcoat and its method of curing, the degree of thinning required is very dependent upon the environmental conditions in which the topcoat is applied. The topcoat cures upon exposure to airborne moisture. Therefore, under high humidity conditions an opened can of topcoat might cure to a solid block overnight. This rapid cure resulted in a wide variety of opinions as to the level of thinning required. While some application equipment manufacturers (Seffick, 1995) and some users believe that it is possible to apply the CARC topcoat

without thinning, an equal number of opposing opinions were also found. At this time, no supporting literature has been found that can detail the techniques and equipment required to spray without thinning.

A second area of investigation was the use of improved housekeeping techniques. These techniques included using a gun cleaning bath that recycles solvents for multiple uses. Another technique would be the use of an inert gas "blanket" for purging moisture laden air from the topcoat cans to reduce the cure reaction in the can. This would increase the shelf-life of the topcoat and reduce the amount of thinner needed to maintain spraying viscosity. These alternatives were also eliminated due to a lack of information on the effectiveness of each technique.

The third and selected alternative was to reduce the amount of overspray by changing the application equipment. Electrostatic equipment was eliminated because of its inability to coat non-conductive surfaces. Therefore, it would be unable to coat the polymer sections of targets which are generally the most susceptible to chemical agent exposure.

There is a large pool of HVLP spraying equipment that shows a wide range of values of transfer efficiency. The turbine-powered Can-am system was chosen for analysis. This equipment was independently analyzed (Hughes Aircraft Company, 1991 as reported in Cavendar et al., 1994) against several other HVLP systems so side-by-side comparative information was available. This system is also currently used at several bases so additional user opinions could be obtained. The equipment uses a patented turbine technology to provide high volume low pressure air instead of the traditional method of using normal compressed air which passes through a conversion zone which in turn converts high pressure low volume air into HVLP. The turbine system thus reduces the amount of turbulence which decreases the amount of overspray. Bounceback of both HVLP technologies is minimal due to the low pressures involved.

4.4.2 Primers

Primer alternatives were limited to either selection of primers that fall within the same military specification (Mil-P-53022), but are made by alternative manufacturers, or to selection of a primer that falls within the only accepted alternative military specification (Mil-P-53030). Primers used for other materials were not considered because the information regarding adhesion to CARC topcoats would not be available. Due to the similarity of constituents used by different manufacturers when creating a primer for a given specification, it was decided that a review of the alternative specification would provide more substantial opportunity for improvement.

The alternative and the baseline are epoxy-polyamide systems. However, the alternative is water thinnable while the baseline can only be solvent thinned. While both primers do not generally require thinning for application, the baseline does require the use of a solvent for cleanup. The alternative can be cleaned with water. Unfortunately, the levels of solvent used for cleaning are not tracked as closely as those for thinning. Therefore, engineering judgements had to be made as to the level of reductions obtainable from the elimination of solvents for thinning. Since both systems have obtained military specification approval, they are expected to perform similarly in terms of adhesion and corrosion resistance.

4.4.3 Thinners

Thinner alternatives were again limited to selecting alternative manufacturers or selecting the only other currently used thinner which is classified under Federal Standard A-A-857B. Again, the choice was to select the alternative standard and not an alternative manufacturer. Thinner specifications describe the actual constituents required and the minimum or maximum levels which than can be used. Therefore, a comparison of thinners from different manufacturers would be unlikely to provide noticeable differences.

The baseline system is specifically designed as a thinner for aircraft coatings, while the alternative was designed as a dope and lacquer thinner. However, the lacquer thinner has been found to be an effective thinner of CARC by some who have used it (Ft. Eustis). The alternative thinner is currently being used at Ft. Eustis and believed to be effective. The performance of the thinners, like the primers, does appear to be dependent on the environmental conditions in which it is used.

5.0 Life Cycle Impact Assessment Results

5.1 Environmental Impact Characterization/Valuation

5.1.1 Impact Characterization

The environmental impact significance of each resource and emission from the CARC LCI data shown in Appendix C was characterized (evaluated) using the equivalency factors reported in Table 3-3. The importance of each individual resource or chemical within an impact category was determined by multiplying the equivalency factor times the inventory value in pounds per functional unit. The results of these calculations for each resource or emission are provided as "factored scores" within each of the nine impact categories in Appendix D (Tables D-1 through D-9). These "factored scores" are the basis for the environmental impact valuation results discussed below, which are combined with the results for the economic and performance assessments in arriving at the conclusions regarding primary improvement opportunities that are described in Section 7.

5.1.2 Impact Valuation

In order to make comparisons <u>between</u> impact categories, the factored scores were normalized <u>within</u> an impact category and a valuation process was conducted on the nine impact categories. Normalization of "factored scores" was accomplished <u>within</u> an impact category by using the highest "factored score" in an impact category. The resulting "normalized factored scores" for each inventory item, including the total for all resources or chemicals in each impact category, are provided in Appendix D. The impact category totals from the tables in Appendix D are also shown in Table 6, which summarizes the valuation results.

Valuation of the nine impact categories was conducted using the AHP. A team of four Battelle staff representing substantially different scientific disciplines (chemical engineer, water chemist, civil engineer, and ecologist) were used to select preferred impact categories in a structured manner supported by the EC software package. A hierarchy "tree" was constructed as shown in Figure 5-1, with the goal to choose the most important environmental categories as the main "branches" and the nine individual impact categories selected for the streamlined CARC LCIA as the "leaves" on the tree. Impact categories were first broken down on a spatial basis, according to their influence on a global, regional, or local basis. The result of this process is the calculation of the weighting factors shown in Figure 5-2, which indicate the relative importance of each of the nine impact categories. These results indicate that the impacts of greatest concern to this group are ozone depletion (weight = 0.332), global warming (weight = 0.124), and smog creation (weight = 0.189). Although water use was included in the valuation process, it was not included in the LCIA, because net water used for each process in the lifecycle was not determined, because water availability is plentiful in most areas of the U.S. associated with CARC life-cycle operations, and because water is typically treated and reused or released to the environment.

When the normalized factored scores for each impact category are multiplied by the AHP weighting factors for the same category, the results provide a relative environmental impact ranking among impact categories for the baseline conditions (Table 5-1). Based on the normalized, weighted, factored scores, the three impact categories with the greatest impact for the CARC life-

cycle under baseline conditions are the same three impact categories identified to be of greatest concern by the AHP valuation process (i.e., ozone depletion = 0.362, acid deposition = 0.219, and global warming = 0.126). Thus, these are the impact areas with the greatest potential for reducing the overall environmental impact. However, it should be noted that all forms of toxicity (human, terrestrial, and aquatic) combined have a normalized, weighted, factored score of 0.316, which would make these combined impact subcategories second in overall potential for impact reduction.

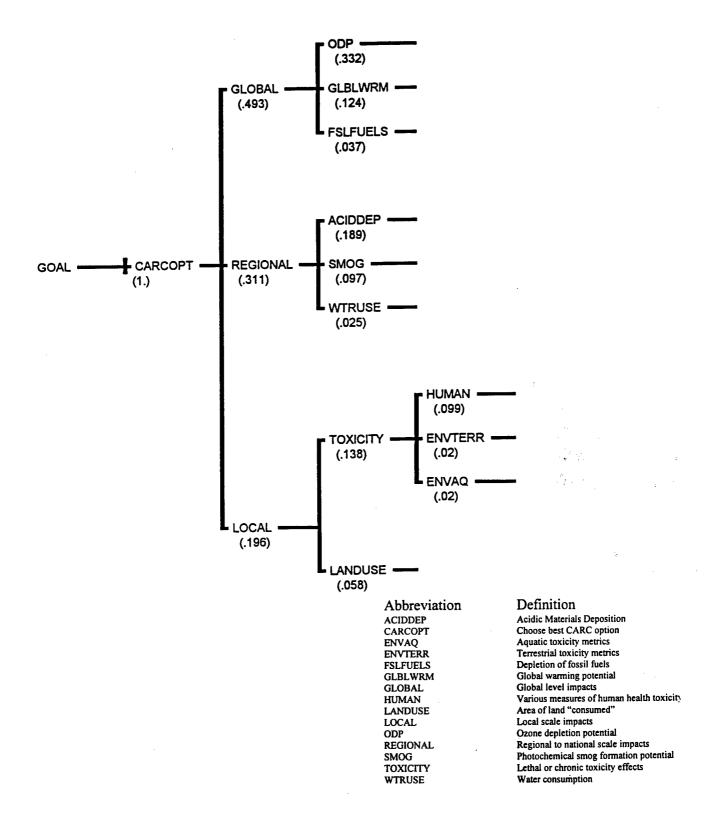
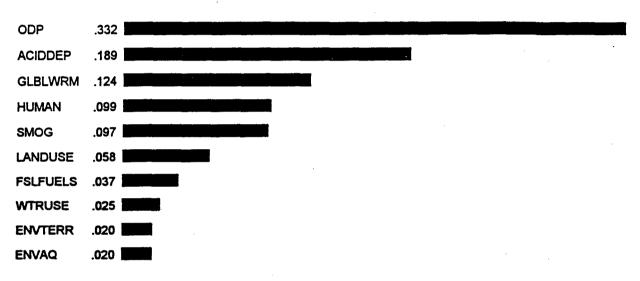



Figure 5-1. Results of impact category valuation by the AHP (distributive mode).

Synthesis of Leaf Nodes with respect to GOAL Distributive Mode

OVERALL INCONSISTENCY INDEX = 0.09

Abbreviation	Definition	
ODP	Ozone Depletion Potential	
ACIDDEP	Acidic Materials Deposition	
GLBLWRM	Global Warming Potential	
HUMAN	Various measures of human health toxicity	
SMOG	Photochemical Smog Formation Potential	
LANDUSE	Area of land "consumed"	1.071.
FSLFUELS	Depletion of Fossil Fuels	
WTRUSE	Water Consumption	
ENVTERR	Terrestrial toxicity metrics	
ENVAQ	Aquatic toxicity metrics	· · · · · · · · · · · · · · · · · · ·

Figure 5-2. Relative importance of nine primary impact categories based on AHP.

Table 5-1. Life Cycle Impact Valuation Calculations

•		AHP	Normalized	7.00		
Spatial Scale Ir	Impact Categories	Weighting Factor	Factored	Weight	Weignted, Normalized, Factored Score	Score
						1.275
GLOBAL	A CONTRACTOR CONTRACTOR OF THE PROPERTY OF THE			4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.534	
	ODP	0.332	1.090		0.362	
U	GLBLWRM	0.124	1.013		0.126	
	FSLFUELS	0.037	1.263		0.047	
REGIONAL	a seggesegtenden i dann und den den den der steffigenisken mennem dermen dermen derretedet eksetzielden	Andreas and the second			0.334	
4	CIDDEP	0.189	1.198		0.226	
S	MOG	0.097	1.114		0.108	
>	WTRUSE	0.025			0000	
LOCAL	n und siede aufermannt der de der der der der der der der der				0.406	
—	TOXICITY			١	€0.314	
	HUMAN	0.099	2.150	0.213		
A DESCRIPTION OF THE PROPERTY	ENVTERR	0.020	3.799	0.076		
	ENVAQ	0.020	1.280	0.026		
	LANDUSE	0.058	1.577		(0.091	

5.2 Economic Assessment

The estimated costs for CARC depainting and painting at Fort Eustis are shown in Table 5-2.

Table 5-2. Estimated Baseline FCI, Annual Operating Cost, and Annualized Costs

Fixed Capital Investment (FCI), \$1,000	\$516
Annual operating cost, \$1,000	\$1,797/yr (or \$2,903/1,000 ft ²)
Annualized cost, \$1,000	\$1,845/yr (or \$2,981/1,000 ft²)

5.2.1 Fixed Capital Investment

The estimated baseline FCI, \$516,000, was based on operations at Fort Eustis (Table 5-3).

Table 5-3. Estimated Baseline Fixed Capital Investment

Cost Item	Base Case	Basis
Purchased equipment (PE)	\$120,500	100% of purchased equipment (PE) cost
PE installation	54,225	45% of PE cost
Instrument and control	10,845	9% of PE cost
Piping	19,280	15% of PE cost
Electrical	12,050	10% of PE cost
Building	102,000	\$43 per ft², 24 ft x 36 ft adjusted
Yard improvement	15,665	13% of PE cost
Service facilities	48,200	40% of PE cost
Land	0	Provided by base
Total Direct Plant Cost	\$382,765	
Engineering and supervision	39,765	33% of PE cost
Construction expense	46,995	39% of PE cost
Total Direct and Indirect Costs	\$469,525	
Contractors fees	23,476	5% of direct and indirect costs
Contingency	23,476	5% of direct and indirect costs
Fixed Capital Investment	\$516,478	

5.2.2 Annual Operating Cost

The estimated annual operating cost, \$1,797,000/yr as shown in Table 5-4, was based on operations typical of Fort Eustis.

Table 5-4. Estimated Baseline Annual Operating Cost

Cost Item	Base Case	Basis
Raw Materials		
Basecase topcoat	\$111,431	\$36/gal
Basecase primer	31,096	\$17/gal
Basecase thinner	24,437	\$15/gal
Depainting grit	7,993	\$0.25/lb
Utility		
Electricity	89,954	\$0.06/kWhr
Labor		
Operating	520,296	\$25/hr
Maintenance	13,524	3% of FCI
Supervision	78,044	15% of operating labor
Operating Supplies	78,044	15% of operating labor
Maintenance Supplies	18,031	4% of FCI
Laboratory Charges	78,044	15% of operating labor
Plant Overhead	367,118	60% of operating/maintenance labor
Waste Disposal		
Topcoat applied with HVLP gun	3,095	\$10/gal
BP primer	1,829	\$10/gal
Painting materials	4,924	100% of paint/primer disposal costs
Abrasive	42,904	\$0.58/lb
Insurance	4,508	1% of FCI
Regulatory Compliance	52,030	10% of operating labor
Total Annual Operating Costs	\$1,527,302	
per painted area	\$3,240	per 1,000 ft ²
Capital amortization	42,220	9.37% FCI (11 yrs service @ 6%)
per painted area	\$90	per 1,000 ft ²
Total cost	1,569,522	
per painted area	\$3,330	per 1,000 ft ²

5.2.3 Annualized Cost

The estimated annualized cost, \$1,845,000/yr, is the sum of the annual operating cost and amortization. Details are provided in Table 5-5.

Table 5-5. Annualized Baseline Cost

Cost Element	Va	alue
	\$1,000/yr	\$1,000/ft²
Annual operating cost	1,797	2,903
Amortization	48	103
Annualized cost	1,845	2,981

5.3 Performance Assessment

5.3.1 Application Equipment

The evaluation parameter results for the baseline application equipment used at Fort Eustis, which is the MACH 1 HVLP spray gun with a 97-95 nozzle made by Binks, are as follows:

- <u>Transfer Efficiency</u> (TE): Rating 65% (Martin, personal communication, 1995; Miller, personal communication, 1995; Hughes Aircraft Company, 1991 as reported in Cavendar et al., 1994)
- Surface Quality: Rating Acceptable (Martin, personal communication, 1995; Miller, personal communication, 1995; Hughes Aircraft Company, 1991 as reported in Cavendar et al., 1994)

Transfer efficiency shows the most potential for significant improvement. Significant improvement in surface quality is not considered to be needed.

5.3.2 Primer

The baseline primer used at Fort Eustis is Mil-P-53022, which is a corrosion inhibiting, lead (Pb) and chromate free, epoxy coating, made by Niles. The evaluation parameter results for the baseline primer are as follows:

- <u>Effect of Temperature and Humidity</u>: Rating 3, minimal impact not seen as having practical significance (Hale, personal communication, 1995; Miller, personal communication, 1995)
- <u>Cure Rate</u>: Rating 3, cure rate had minimal affect on painting schedule (Hale, personal communication, 1995; Miller, personal communication, 1995)
- Surface Pretreatment Requirements: Rating 2, minimal cleaning with solvent rag required (Hale, personal communication, 1995; Miller, personal communication, 1995)
- Ease of Cleanup of the Primer: Rating 2, moderate effort required for cleanup (Hale, personal communication, 1995; Miller, personal communication, 1995)

Improvement in any of the three areas is possible. However, decreases in the primer's ranking in terms of effect of temperature and humidity would be viewed as most significant as is indicated by the weighting factor.

5.3.3 Thinners

The baseline thinner is Mil-T-81772B and is an aircraft coating made by CSD. The evaluation parameter results for the baseline thinner are as follows:

- Thinning Ratio or Thinner Effectiveness: 4:1 ratio for CARC:Thinner (Woody, personal communication, 1995; Miller, personal communication, 1995)
- <u>Film Characteristics</u>: Rating 3, minimal blemishes not believed significant (Woody, personal communication, 1995; Miller, personal communication, 1995)

The thinning ratio is seen as the most likely area for improvement.

6.0 Technical and Economic Evaluation of Improvements

This section provides the reader with the basis for analyzing each of the alternatives according to each of the three evaluation dimensions individually and then through the use of the valuation results, collectively. The LCA inventory results are presented first because in some cases an alternative may be possible to analyze on the basis of a "less is better" strategy, in cases where all or most of the inventory categories are lower than those of the baseline or current system. When this occurs, interpretation using the impact results becomes unnecessary. However, this is rarely the situation so the impact-based results are presented next. Finally, the results for the cost and performance elements are provided.

6.1 Inventory Analysis

Five alternatives were each evaluated against the baseline CARC system. Summary tables and graphs for the inventory results are provided below; additional details may be found in Appendix C. The baseline inventory results are summarized in Table 6-1. The first column in the table shows the total life-cycle aggregated information, the second column values are associated with the raw materials and manufacturing life-cycle stages, and the third column values are associated with depainting operations, application of the CARC at a base together with any disposal or recycling activities.

The first alternative utilized an alternative primer coupled with the baseline CARC topcoat and thinner. The baseline HVLP gun was used with both the primer and topcoat materials. The primary difference in the two primer formulations is the substitution of various solvents and the addition of more TiO₂ pigment to produce an alternative product capable of being water-thinned. The summary level inventory results shown in Table 6-2 indicate a combination of both increases and decreases in resource and energy consumption data relative to the baseline. A small decrease in resource consumption is noted for electricity, natural gas, steam, water, crude oil, refinery gases, oxygen and other minor components. Small increases were noted for fuel, sodium chloride, chlorine and the ilmenite and rumenite involved in the production of TiO2. Use of phosphate and zinc ores was eliminated. Major categories of air emissions showed decreases in CO2, VOC, PM, NO4, hydrocarbons, and CO. There were slight increases in chlorine and methane. Water usage and discharges were also generally reduced including mobile ions, sodium, chloride, oil and grease, and boron. Increased water discharges were noted for titanium dioxide, chlorine and heavy metals including cadmium, lead, and chromium. Hazardous solid wastes were reduced slightly while several chemicals were added to the list from the production of nitroethane including acetaldehyde, methanol, 2-nitropropane, acetone, acetonitrile, nitric acid, and ammonia. Because these chemical emissions are different than those for the baseline, it is difficult to unequivocally interpret the inventory results alone with respect to trace emissions to air and water.

Table 6-1	Baseline CARC	System Life (cycle inventory	Summary	Results
I able 0-1.	Dascille Unit	Of 3 Colling Price of	,, 0.0 0		

Table 6-1. Baseline CARC System Life Cycle Inventory Summary Results					
LCI Components	Units	Baseline CARC System Quantity	CARC System Materials Manufacture Quantity	CARC System Use/Reuse Maintenance Quantity	
	ft^2	1,000			
Functional Unit (FU)	11 2	1,000			
Resource and Energy Consumption Electricity Natural gas	BTU/FU BTU/FU	8.3E + 05 1.4E + 07 5.9E + 05	8.3E + 05 1.4E + 07 5.9E + 05	0.0E + 00 0.0E + 00 0.0E + 00	
Steam Water	BTU/FU lb/FU	4.4E + 04	4.4E + 04	0.0E + 00	
Fuel	lb/FU	3.9E+04 2.8E+03	3.9E + 04 2.8E + 03	0.0E + 00 0.0E + 00	
Crude oil	lb/FU lb/FU	2.8E + 03 8.4E + 01	8.4E+01	0.0E + 00	
Bauxite Air	lb/FU	7.6E + 01	7.6E+01	0.0E + 00	
Refinery gases	ib/FU	7.2E + 01	7.2E + 01	0.0E + 00	
Sodium Chloride	lb/FU	4.3E + 01	4.3E + 01	0.0E + 00	
Oxygen	lb/FU	1.5E + 01	1.5E + 01	0.0E + 00	
Silica	lb/FU	1.4E + 01	1.4E+01	0.0E+00	
Chlorine	lb/FU	1.3E+01	1.3E + 01	0.0E + 00	
Zinc ore	Ib/FU	8.3E+00	8.3E+00	0.0E + 00 0.0E + 00	
Rumenite	Ib/FU	6.1E+00 6.0E+00	6.1E+00 6.1E+00	0.0E + 00 0.0E + 00	
Sulfuric acid	lb/FU lb/FU	4.7E+00	4.7E+00	0.0E + 00	
Limestone Chrome oxide	lb/FU	4.6E + 00	4.6E + 00	0.0E + 00	
Soda ash	lb/FU	2.6E+00	2.6E + 00	0.0E + 00	
Ilmenite	lb/FU	2.4E + 00	2.4E + 00	0.0E + 00	
Magnesium ore	lb/FU	2.2E + 00	2.2E + 00	0.0E + 00	
Phosphate ore	lb/FU	2.1E+00	2.1E+00	0.0E + 00	
Iron ore	lb/FU	1.3E+00 1.1E+00	1.3E + 00 1.1E + 00	0.0E + 00 0.0E + 00	
Coke	lb/FU lb/FU	1.0E + 00	1.0E + 00	0.0E + 00	
Colbalt oxide Magnetite	lb/FU	4.0E-01	4.0E-01	0.0E + 00	
Sodium hydroxide	lb/FU	3.2E-01	3.2E-01	0.0E + 00	
Coal	lb/FU	2.9E-01	2.9E-01	0.0E+00	
Starch	Ib/FU	2.1E-01	2.1E-01	0.0E + 00 0.0E + 00	
SiAI Bha a bha sia a aid	lb/FU lb/FU	5.4E-02 4.8E-02	5.4E-02 4.8E-02	0.0E + 00	
Phosphoric acid Hydrocarbons C8 to C10	Ib/FU	1.7E-02	1.7E-02	0.0E + 00	
Hydropotential	m^3-m/FU	6.9E-03	6.9E-03	0.0E + 00	
Sulfur dioxide	lb/FU	2.2E-03	2.2E-03	0.0E+00	
Residual Fuel Oil	lb/FU	4.9E-06	4.9E-06	0.0E+00	
Distillate Fuel Oil	lb/FU	4.2E-07	4.2E-07 4.1E-09	0.0E + 00 0.0E + 00	
Uranium	lb/FU lb/FU	4.2E-09 0.0E+00	0.0E + 00	0.0E + 00	
Proprietary Primer Ingredients	וט/רט	0.06 + 00	0.01 + 00	0.02 / 00	
Air Emissions			0.05 .00	0.05 - 00	
CO2	lb/FU	3.0E + 02	3.0E + 02 2.2E + 01	0.0E + 00 0.0E + 00	
Sox	lb/FU lb/FU	2.2E+01 1.5E+01	2.2E + 01 1.5E + 01	0.0E + 00 0.0E + 00	
VOC NOx	lb/FU	6.1E+00	6.1E+00	0.0E + 00	
PM	lb/FU	6.0E + 00	6.0E + 00	0.0E + 00	
Hydrocarbons	lb/FU	3.3E+00	3.3E + 00	0.0E + 00	
CO	lb/FU	1.4E + 00	1.4E + 00	0.0E+00	
Chlorine	lb/FU	5.8E-01	5.8E-01	0.0E + 00	
MIAK	lb/FU lb/FU	5.2E-01 3.3E-01	7.1E-02 3.3E-01	4.5E-01 0.0E + 00	
Isobutyraldehyde	lb/FU	3.1E-01	3.1E-01	0.0E + 00	
PM10 Methane	lb/FU	2.8E-01	2.8E-01	0.0E + 00	
Benzene	lb/FU	2.0E-01	2.0E-01	0.0E + 00	
Heavy Aromatics	lb/FU	2.0E-01	2.0E-01	0.0E + 00	
Butyl acetate	lb/FU	1.5E-01	0.0+00	1.5E-01 1.4E-02	
Toulene	lb/FU lb/FU	1.3E-01 8.9E-02	1.2E-01 8.9E-02	0.0E + 00	
Acetaldehyde	lb/FU	8.6E-02	8.6E-02	0.0E + 00	
Heptane	10/1 3	3.02 02	J		

Table 6-1. Baseline CARC System Life Cycle Inventory Summary Results (continued)

LCI Components	Units	Baseline CARC System Quantity	CARC System Materials Manufacture Quantity	CARC System Use/Reuse Maintenance Quantity
Functional Unit (FU)	ft^2	1,000		
Propaga	lb/FU	7.4E-02	7.4E-02	0.0E+00
Propane Hexane	lb/FU	6.7E-02	6.7E-02	0.0E + 0
	lb/FU	6.6E-02	0.0E + 00	6.6E-0
Naptha		5.9E-02	5.9E-02	0.0E+0
n-Butane	lb/FU	5.9E-02		3.8E-0
MEK	lb/FU	5.9E-02	2.0E-02	
Octane	lb/FU	5.7E-02	5.7E-02	0.0E+0
Hexyl acetate	lb/FU	5.6E-02	0.0E+00	5.6E-0
Xylene	lb/FU	5.6E-02	9.4E-03	4.7E-0
Ethane	lb/FU	4.7E-02	4.7E-02	0.0E+0
Pentane	lb/FU	4.3E-02	4.2E-02	0.0E + 0
Butyl alcohol	lb/FU	3.4E-02	0.0E + 00	3.4E-0
Fluorine	lb/FU	2.8E-02	2.8E-02	0.0E+0
Cumene	lb/FU	2.7E-02	2.7E-02	0.0E + 0
Organic Acids	lb/FU	2.5E-02	2.5E-02	0.0E+0
MIŘK	lb/FU	2.3E-02	1.1E-02	1.2E-0
Aromatic hydrocarbons	lb/FU	2.3E-02	4.0E-04	2.3E-0
Phenol	lb/FU	2.2E-02	2.2E-02	0.0E + 0
Formaldehyde	lb/FU	2.1E-02	2.1E-02	0.0E + 0
Aldehydes	lb/FU	1.9E-02	1.9E-02	0.0E + 0
C-7 cycloparaffins	lb/FU	1.2E-02	1.2E-02	0.0E + 0
Acetone	lb/FU	8.3E-03	8.3E-03	0.0E + 0
Ethylene dichloride	lb/FU	7.7E-03	7.7E-03	0.0E + 0
HCN	lb/FU	6.7E-03	6.7E-03	0.0E+0
C-8 cycloparafins	lb/FU	4.4E-03	4.4E-03	0.0E + 0
Ethyl chloride	lb/FU	3.0E-03	3.0E-03	0.0E + 0
Iso-Butane	lb/FU	2.9E-03	2.9E-03	0.0E + 0
	lb/FU	2.8E-03	2.8E-03	0.0E + 0
Carbon tetrachloride	lb/FU	2.8E-03	2.8E-03	0.0E + 0
Ethylene Trisbiase at hand	lb/FU	2.3E-03	2.3E-03	0.0E + 0
Trichloroethane	lb/FU	2.2E-03	2.2E-03	0.0E + 0
Ethyibenzene	lb/FU	1.4E-03	1.4E-03	0.0E + 0
Vinyl chloride	ID/FU	1.3E-03	1.3E-03	0.0E+0
Chloroform	lb/FU	1.3E-03	1.3E-03	0.0E + 0
Hydrochloric acid	lb/FU	1.3E-03		0.0E + 0
Lead	lb/FU	8.8E-04	8.8E-04	0.0E + 0
Ammonia	lb/FU	6.2E-06	6.2E-06	0.0E + 0
Kerosene	lb/FU	4.4E-09	4.4E-09	0.05+0
Naththalene	lb/FU	0.0E + 00	0.0E+00	0.0E+0
Methanol	lb/FU	0.0E + 00	0.0E+00	0+30.0
Butyl cellosolve	lb/FU	0.0E+00	0.0E+00	0.0E+0
Nitric acid	lb/FU	0.0E+00	0.0E+00	0.0E+0
Bromotrifluoromethane	lb/FU	0.0E + 00	0.0E+00	0.0E+0
Nitroethane	lb/FU	0.0E + 00	0.0E + 00	0.0E+0
Dichlorodifluoromethane	lb/FU	0.0E + 00	0.0E + 00	0.0E+0
Sulfuric acid	lb/FU	0.0E + 00	0.0E + 00	0.0E+0
Bromochlorodifluoromethane	lb/FU	0.0E + 00	0.0E + 00	0.0E+0
Acetonitrile	lb/FU	0.0E + 00	0.0E + 00	0.0E + 0
2-nitropropane	lb/FU	0.0E + 00	0.0E + 00	0.0E+0
1,2-butylene	lb/F U	0.0E + 00	0.0E + 00	0.0E + 0
Propylene	lb/FU	0.0E + 00	0.0E + 00	0.0E + 0
MPK	lb/FU	0.0E + 00	0.0E + 00	0.0E + 0
Isopropyl alcohol	lb/FU	0.0E + 00	0.0E + 00	0.0E + 0
Propyl acetate	lb/FU	0.0E + 00	0.0E + 00	0.0E + 0
Aliphatic hydrocarbons	lb/FU	0.0E + 00	0.0E+00	0.0E + 0
Wastewater Emissions				
Wastewater	lb/FU	3.3E+03	3.3E + 03	0.0E + 0
wastewater				
	lb/FU	1.6E + 02	1.6E + 02	
wastewater WW reinj'd WW discharg.		1.6E + 02 7.1E + 01 3.5E + 01	1.6E + 02 7.1E + 01 3.5E + 01	0.0E + 0 0.0E + 0 0.0E + 0

Table 6-1. Baseline CARC System Life Cycle Inventory Summary Results (continued)

 LCI Components	Units	Baseline CARC System Quantity	CARC System Materials Manufacture Quantity	CARC System Use/Reuse Maintenance Quantity
 Functional Unit (FU)	ft^2	1,000		
MAA/ Injected	lb/FU	2.3E+01	2.3E+01	0.05 + 00
WW Injected Sodium	Ib/FU	1.4E+01	1.4E+01	0.0E+00
Chloride	lb/FU	1.1E+01	1.1E+01	0.0E + 00 0.0E + 00
Oil and Grease	lb/FU	3.6E-01	3.6E-01	0.0E + 00
titanium dioxide	Ib/FU	1.3E-01	1.3E-01	0.0E + 00
Chlorine	lb/FU	3.9E-02	3.9E-02	0.0E + 00
Boron	lb/FU	1.5E-02	1.5E-02	0.0E + 00
Cadmium	lb/FU	5.0E-03	5.0E-03	0.0E + 00
Lead	lb/FU	1.8E-03	1.8E-03	0.0E+00
Benzene	lb/FU	7.1E-04	7.1E-04	0.0E + 00
Aluminum	lb/FU	5.9E-04	5.9E-04	0.0E + 00
Chromium	lb/FU	5.5E-04	5.5E-04	0.0E+00
Vanadium	lb/FU	1.3E-04	1.3E-04	0.0E + 00
Copper	lb/FU	4.1E-05	4.1E-05	0.0E + 00
Zinc	lb/FU	4.1E-05	4.1E-05	0.0E+00
Arsenic	lb/FU	3.0E-05	3.0E-05	0.0E+00
Iron	lb/FU	8.1E-06	8.1E-06	0.0E + 00
Mercury	lb/FU	6.1E-06	6.1E-06	0.0E + 00
Thallium	lb/FU	5.2E-06	5.2E-06	0.0E + 00
Dissolved Solids	lb/FU	6.8E-07	6.8E-07	0.0E + 00
Magnesium	lb/FU	1.2E-07	1.2E-07	0.0E + 00
Sulfuric Acid	lb/FU	9.4E-08	9.4E-08	0.0E + 00
COD	lb/FU	4.5E-09	4.5E-09	0.0E + 00
Suspended Solids	lb/FU	2.3E-09	2.3E-09	0.0E + 00
BOD	lb/FU	1.4E-09	1.4E-09	0.0E + 00
Acid	lb/FU	7.6E-10	7.6E-10	0.0E + 00
Oil	lb/FU	7.6E-10	7.6E-10	0.0E + 00
Metals	lb/FU	3.8E-10	3.8E-10	0.0E + 00
Phenol	lb/FU	3.8E-10	3.8E-10	0.0E + 00
Sulfide	lb/FU	3.8E-10	3.8E-10	0.0E+00
Ammonia	lb/FU	0.0E + 00	0.0E+00	0.0E+00
Hydrogen cyanide	ib/FU	0.0E + 00	0.0E + 00	.0.0E+00
Solid Wastes				
Hazardous Wastes	lb/FU	8.1E+01	2.3E+00	7.8E + 01
Solid Wastes	lb/FU	6.2E+01	6.2E+01	0.0E + 00
U238	lb/FU	5.4E-09 2.0E-09	5.4E-09 2.0E-09	0.0E + 00 0.0E + 00
Fly Ash FGD Solids	lb/FU lb/FU	7.9E-10	7.9E-10	0.0E + 00
Bottom Ash	lb/FU	5.7E-10	5.7E-10	0.0E + 00
Slag	lb/FU	2.2E-10	2.2E-10	0.0E + 00
U235	lb/FU	4.5E-11	4.5E-11	0.0E + 00
Pu (fissile)	lb/FU	3.7E-11	3.7E-11	0.0E + 00
Fission Products	lb/FU	2.6E-11	2.6E-11	0.0E + 00
Pu (nonfissile)	lb/FU	1.4E-11	1.4E-11	0.0E + 00
U236	lb/FU	3.6E-12	3.6E-12	0.0E + 00
Methanol	Ib/FU	0.0E + 00	0.0E + 00	0.0E + 00
Ammonia	lb/FU	0.0E + 00	0.0E + 00	0.0E + 00
Nitric acid	lb/FU	0.0E + 00	0.0E + 00	0.0E + 00
Naphathalene	lb/FU	0.0E + 00	0.0E + 00	0.0E + 00
Formaldehyde	lb/FU	0.0E + 00	0.0E + 00	0.0E + 00
2-nitropropane	lb/FU	0.0E + 00	0.0E + 00	0.0E + 00
Acetonitrile	lb/FU	0.0E + 00	0.0E + 00	0.0E + 00
Acetone	Ĭp∕ŁΩ	0.0E + 00	0.0E + 00	0.0E + 00
Acetaldehyde	lb/FU	0.0E + 00	0.0E + 00	0.0E + 00
Hydrogen cyanide	lb/FU	0.0E + 00	0.0E + 00	0.0E + 00

Table 6-2. Alternative Primer CARC System Life Cycle Inventory Summary Results

LCI Components	Units	Baseline CARC System Quantity	CARC System Materials Manufacture Quantity	CARC System Use/Reuse Maintenance Quantity
Functional Unit (FU)	ft^2	1,000		
Resource and Energy Consumption Electricity	BTU/FU	7.6E + 05	7.6E + 05	0.0E+0
Natural gas	BTU/FU	1.3E+07	1.3E+07	0.0E + 0
Steam	BTU/FU	5.4E+05	5.4E + 05 6.4E + 04	0.0E + 0 0.0E + 0
Fuel	lb/FÜ lb/FU	6.4E + 04 4.0E + 04	4.0E + 04	0.0E+0
Water	ib/FU	2.4E + 03	2.4E + 03	0.0E + 0
Crude oil Air	lb/FU	1.2E + 02	1.2E+02	0.0E+0
Bauxite	lb/FU	8.4e+01	8.4e + 01	0.0E+0
Refinery gases	lb/FU	6.7E+01	6.7E+01	0.0E+0
Refinery gases Sodium Chloride	lb/FU	4.3E+01	4.3E+01	0.0E + 0 0.0E + 0
Chlorine	Ib/FU	1.5E+01 1.3E+01	1.5E+01 1.3E+01	0.0E + 0
Silica	lb/FU lb/FU	1.3E+01	1.3E + 01	0.0E + 0
Oxygen	lb/FU	9.9E+00	9.9E + 00	0.0E+0
Rumenite Sulfuric acid	lb/FU	8.2E + 00	8.2E+00	0.0E + 0
Limestone	lb/FU •	4.7E+00	4.7E+00	0.0E+0
Chrome oxide	lb/FU	4.6E+00	4.6E + 00	0.0E+0
Ilmenite	lb/FU	3.9E + 00 2.6E + 00	3.9E + 00 2.6E + 00	0.0E+(0.0E+(
Soda ash	lb/FU	2.2E + 00	2.2E + 00	0.0E + 0
Magnesium ore Coke	lb/FU lb/FU	1.8E + 00	1.8E + 00	0.0E+0
Coke	ib/FU	1.3E + 00	1.3E + 00	0.0E + 0
Iron ore Cobalt oxide	ib/FŬ	1.0E + 00	1.0E + 00	0.0E+0
Sodium hydroxide	lb/FU	5.3E-01	5.3E-01	0.0E+0
Magnetite	lb/FU	4.0E-01	4.0E-01	0.0E+0
Starch	ib/EU	2.1E-01 9.2E-02	2.1E-01 9.2E-02	0.0E + 0
Hydrocarbons C8 to C10	ib/FU lb/FU	8.8E-02	8.8E-02	0.0E + 0
SiAI	10/FU m^3-m/FU	4.8E-02	4.8E-02	0.0E+0
Phosphoric acid	m^3-m/FU lb/FU	6.3E-03	6.3E-03 2.2E-03	$0.0E \pm 0$
Hydropotential Sulfur dioxide	ib/FŬ	2.2E-03	2.2E-03	0.0E + 0
Coal	lb/FU	1.6E-05	1.6E-05	0.0E+9
Residual Fuel Oil	lb/FU	4.4E-06	4.4E-06	0.0E+0 0.0E+0
Distillate Fuel Oil	ib/EU	3.9E-07 3.8E-09	3.9E-07 3.8E-09	0.0E + 0
Uranium	Ib/FU	0.0E+00	0.0E + 00	0.0E+0
Phosphate ore	lb/FU lb/FU	0.0E + 00	0.0E + 00	0.0E + 0
Propritary Primer Ingredients Zinc ore	lb/FU	0.0E + 00	0.0E + 00	0.0E+0
	.5,. 0		•	
Air Emissions CO2	lb/FU	2.7E+02	2.7E + 02	0.0E+
Sox_	lb/FU	2.1E+01	2.1E+01	0.0E+
VÕC	ib/FU lb/FU	1.4E+01	1.4E + 01	0.0E + 0.0E + 0
PM	Ib/FU	6.0E + 00 5.9E + 00	6.0E + 00 5.9E + 00	0.0E + (
Nox	ib/FU lb/FU	2.9E + 00	2.9E + 00	0.0E +
Hydrocarbons	lb/FU	7.9F-01	7.9É-01 5.9E-01	0.0E+
CO Chlorine	lb/FU	5.9E-01 3.3E-01	5.9E-Q1	0.0E+
Isobutyraldehyde	lb/FU	3.3E-01	3.3E-01	0.0E+
PM10	lb/FU	3.1E-01 2.4E-01	3.1E-01 2.4E-01	0.0E + 0
Methane	Ib/FU	2.4E-01 2.0E-01	2.4E-01 2.0E-01	0.0E + (0.0E + (
Benzene	lb/FU lb/FU	2 0F-01	2.0E-01	0.0E+
Heavy Aromatics	lb/FU	1.1E-01	1.1E-01	0 0F + 0
Toulene Heptane	ib/FU	1.1E-01 7.6E-02 7.1E-02	1.1E-01 7.6E-02	0.0E + 0.0E +
MIAK	lb/FU	7.1E-02	7.1E-02	0.0E+
Propane	lb/FU	6.6E-02	6.6E-02	0.0E+(0.0E+(
Hexane	lb/FU	5.9E-02	5.9E-02	U.UE +

Table 6-2. Baseline CARC System Life Cycle Inventory Summary Results (continued)

Table 6-2. Baselille CARC System	Life Oyele inventor	y Commary Nesarts	CARC	
LCI Components	Units	Baseline CARC System Quantity	CARC System Materials Manufacture Quantity	System Use/Reuse Maintenance Quantity
Functional Unit (FU)	ft^2	1,000		
n-Butane Octane Xylene Ethane Butyl alcohol Acetaldehyde Aromatic hydrocarbons Pentane Cumene Organic Acids Phenol MEK Formaldehyde Aldehydes C-7 cycloparaffins Acetone HCN Ethylbenzene C-8 cycloparaffins Nitroethane Iso-Butane Hydrochloric acid Dichlorodifluoromethane Armonia Naphthalene 2-nitropropane Ethylene Acetonitrile Methanol Bromochlorodifluoromethane 1,2-butylene Kerosene Lead Hexyl acetate Propylene Sulfuric acid Ethyl chloride Vinyl chloride Isopropyl alcohol MPK Propyl acetate Naptha Butyl acetate Fluorine MIBK Trichloroethane Carbon tetrachloride Chloroform Butyl cellosolve Ethylene dichloride Aliphatic hydrocarbons		1,000 5.18E-022 4.2E-022 4.2E-022 4.2E-022 4.2E-022 4.2E-022 4.2E-022 4.2E-022 4.2E-022 4.2E-022 2.3E-022 2.1E-022 1.7E-022 1.7E-033 3.9E-033 3.9E-033 1.1E-05 6.5E-05 6.4E-05 6.4E-05 6.4E-05 6.1EE-07 9.0E++000 0.0E++00	5.18E-002 4.2E-002 4.2E-002 4.2E-002 4.2E-002 4.0E-002 2.1E-002 2.1E-003 3.3E-003 1.7E-003 1.	0.000000000000000000000000000000000000
Wastewater Emissions Wastewater WW Reinj'd	lb/FU lb/FU	2.9E + 03 1.4E + 02	2.9E+03 1.4E+02	0.0E + 00 0.0E + 00
WW Discharg. Mobile ions	Ib/FU Ib/FU	6.3E + 01 3.1E + 01	6.3E+01 3.1E+01	0.0E + 00 0.0E + 00

Table 6-2. Baseline CARC System Life Cycle Inventory Summary Results (continued)

Table 6-2. Baseline CARC Sys	Units	Baseline CARC System Quantity	CARC System Materials Manufacture Quantity	CARC System Use/Reuse Maintenance Quantity
LCI Components Functional Unit (FU)	ft^2	1,000		
WW Injected Sodium Chloride Oil and Grease Titanium dioxide Chlorine Boron Cadmium Lead Aluminum Chromium Benzene Vanadium Copper Zinc Arsenic Iron Mercury Thallium Ammonia Dissolved Solids Magnesium Hydrogen cyanide Sulfuric Acid COD Suspended Solids BOD Oil Acid Metals Sulfide Phenol	Ib/FU	2.1E+01 1.3E+01 1.3E+01 1.01 2.1EE-01 1.2E-01 1.3.0E-001 1.3.0E-001 1.3.0E-001 1.3.0E-004 1.3.0E-004 1.3.0E-005 1.8.8E-006 1.8.8E-007 1.8.8E-007 1.8.8E-007 1.8.8E-007 1.8.8E-007 1.8.8E-007 1.8.8E-009 1.8.8E-00	2.1E++01 1.3E++01 1.0125-001 1.0125-001 1.0125-003 2.1E-001 1.282-004 2.79E-004 8.39E-005 8.39E-006 8.31E-007 8.31E-	0.0E+00 0.0E+00
Solid Wastes Hazardous Wastes Solid Wastes Acetaldehyde Methanol 2-nitropropane Acetone Acetone Acetonic Ammonia Formaldehyde Naphathalene Hydrogen cyanide U238 Fly Ash FGD Solids Bottom Ash Slag U235 Pu (fissile) Fission Products Pu (nonfissile) U236	b/FU	7.9E+01 6.2E+01 1.0E-02 9.2E-03 8.1E-03 5.6E-03 4.6E-03 6.4E-04 8.0E-05 6.6E-06 6.6E-06 4.9E-09 7.2E-10 2.0E-10 4.2E-11 3.4E-11 1.3E-11 3.3E-12	9.8E-01 6.2E+01 1.0E-02 9.2E-03 8.1E-03 5.6E-03 4.6E-03 6.4E-04 8.0E-05 6.6E-06 6.6E-06 4.9E-09 7.2E-10 5.2E-10 2.0E-10 4.2E-11 3.4E-11 1.3E-11 3.3E-12	7.8E + 01 0.0E + 00 0.0E + 00

The second alternative involved the substitution of the turbine HVLP gun for the standard HVLP gun. All of the materials used were those included in the baseline scenario. This alternative resulted in significantly lower levels of resource consumption, energy usage, and emissions than the baseline (Table 6-3). This is a direct result of the more efficient use of materials and energy. Because a much higher percentage of the CARC sprayed actually ends up on the vehicle surface, not only are the emissions during the application reduced but also the upstream consequences of manufacturing materials that never get applied are eliminated.

The third alternative combines the alternative primer with the alternative gun (Table 6-4). As might be expected, this option shows even greater reductions in energy and resources than the previous alternatives where the primer and gun substitutions were considered independently. In the case of emissions, the picture was mixed. The alternative primer emissions comprise both different compounds than are present in the baseline primer and different amounts of those compounds that are ingredients in common. Thus, the inventory data alone cannot be interpreted in an unequivocal fashion. For those emissions that are in common, some decreased and some increased. The overall amounts decreased but by a smaller amount than for the previous alternative.

The fourth alternative utilized an alternative thinner along with the baseline topcoat, primer, and gun (Table 6-5). The primary difference in the thinners is a reduction and substitution of the acetate-based solvents and the addition of more alcohol-based solvents. The results for this scenario indicate reduced resource and energy demands for electricity, steam, water, crude oil, bauxite, air, residual and distillate fuel oils compared to the data shown for the baseline. Major categories of air emissions showed reduced CO₂ and hydrocarbons with slightly increased SO_x. The data also showed lower water usage and discharge rates in addition to reduced mobile ions, chloride, oil and grease and other minor constituents. Solid wastes showed reductions in the minor categories, but little change was indicated in the amounts of general hazardous and solid wastes.

Table 6-3. Alternative Gun CARC System Life Cycle Inventory Summary Results

		Baseline CARC System	CARC System Materials Manufacture	CARC System Use/Reuse Maintenance
LCI Components	Units	Quantity	Quantity	Quantity
Functional Unit (FU)	ft^2	1,000		_
Resource and Energy Consumption	DTI WELL	0.45.05	0.45.05	
Electricity	BTU/FU	6.1E+05	6.1E+05	0.0E+00
Natural gas Steam	BTU/FU BTU/FU	1.0E+07 4.6E+05	1.0E+07 4.6E+05	0.0E+00
Water	Ib/FU	3.2E+04	3.2E+04	0.0E+00 0.0E+00
Fuel	Ib/FU	2.8E+04	2.8E+04	0.0E+00
Crude oil	Ib/FU	2.0E+03	2.0E+03	0.0E+00
Bauxite	Ib/FU	8.4E+01	8.4E+01	0.0E+00
Air	Ib/FU	5.5E+01	5.5E+01	0.0E+00
Refinery gases	Ib/FU	5.2E+01	5.2E+01	0.0E+00
Sodium Chloride	Ib/FU	3.1E+01	3.1E+01	0.0E+00
Oxygen	Ib/FU	1.1E+01	1.1E+01	0.0E+00
Silica	Ib/FU	9.9E+00	9.9E+00	0.0E+00
Chlorine	Ib/FU	9.5E+00	9.5E+00	0.0E+00
Zinc ore Limestone	Ib/FU Ib/FU	6.0E+00 4.7E+00	6.0E+00 4.7E+00	0.0E+00
Rumenite	ib/FU	4.4E+00	4.7E+00 4.4E+00	0.0E+00 0.0E+00
Sulfuric acid	Ib/FU	4.4E+00	4.4E+00	0.0E+00
Chrome oxide	lb/FU	3.3E+00	3.3E+00	0.0E+00
Soda ash	ib/FU	2.6E+00	2.6E+00	0.0E+00
Ilmenite	Ib/FU	1.7E+00	1.7E+00	0.0E+00
Magnesium ore	lb/FU	1.6E+00	1.6E+00	0.0E+00
Phosphate ore	Ib/FU	1.5E+00	1.5E+00	0.0E+00
Iron ore	Ib/FU	9.3E-01	9.3E-01	0.0E+00
Coke	. Ib/FU	7.7E-01	7.7E-01	0.0E+00
Cobalt oxide Magnetite	Ib/FU Ib/FU	7.2E-01 2.9E-01	7.2E-01 2.9E-01	0.0E+00 0.0E+00
Sodium hydroxide	Ib/FU	2.3E-01	2.3E-01	0.0E+00
Coal	Ib/FU	2.1E-01	2.1E-01	0.0E+00
Starch	Ib/FU	2,1E-01	2.1E-01	0.0E+00
SiAI	Ib/FU	3.9E-02	3.9E-02	0.0E+00
Phosphoric acid	lb/FU	3.4E-02	3.4E-02	0.0E+00
Hydrocarbons C8 to C10	Ib/FU	1.2E-02	1.2E-02	0.0E+00
Hydropotential	m^3-m/FU	5.0E-03	5.0E-03	0.0E+00
Sulfur dioxide	Ib/FU	1.6E-03	1.6E-03	0.0E+00
Residual Fuel Oil Distillate Fuel Oil	Ib/FU Ib/FU	3.5E-06 3.1E-07	3.5E-06 3.1E-07	0.0E+00 0.0E+00
Uranium	Ib/FU	3.0E-09	3.0E-09	0.0E+00
Proprietary Primer Ingredients	Ib/FU	0.0E+00	0.0E+00	0.0E+00
, represent the second		3.32	5,52-75	
Air Emissions	Ib/FU	2.05.02	2.05.00	0.05.00
CO2 SOx	lb/FU	2.2E+02 2.1E+01	2.2E+02 2.1E+01	0.0E+00 0.0E+00
VOC ·	Ib/FU	1.1E+01	1.1E+01	0.0E+00
PM	Ib/FU	4.4E+00	4.4E+00	0.0E+00
NOx	Ib/FU	4.4E+00	4.4E+00	0.0E+00
Hydrocarbons	Ib/FU	2.4E+00	2.4E+00	0.0E+00
CO	Ib/FU	1.0E+00	1.0E+00	0.0E+00
Chlorine	Ib/FU	4.2E-01	4.2E-01	0.0E+00
PM10	Ib/FU	2.9E-01	2.9E-01	0.0E+00
MIAK	Ib/FU	2.9E-01	5.1E-02	2.4E-01
Isobutyraldehyde	Ib/FU	2.6E-01	2.6E-01	0.0E+00
Methane Benzene	Ib/FU Ib/FU	2.0E-01 1.5E-01	2.0E-01 1.5E-01	0.0E+00 0.0E+00
Heavy Aromatics	Ib/FU	1.4E-01	1.4E-01	0.0E+00
Toluene	Ib/FU	9.8E-02	9.0E-02	8.7E-03
Butyl acetate	Ib/FU	7.9E-02	0.0E+00	7.9E-02
Acetaldehyde	ib/FU	6.EE02	6.6E-02	0.0E+00
Heptane	Ib/FU	6.3E-02	6.3E-02	0.0E+00
Propane	Ib/FU	5.4E-02	5.4E-02	0.0E+00
Hexane	Ib/FU	4.9E-02	4.9E-02	0.0E+00
n-Butane	Ib/FU	4.3E-02	4.3E-02	0.0E+00
Octane	Ib/FU	4.2E-02	4.2E-02	0.0E+00

Table 6-3. Alternative Gun CARC System Life Cycle Inventory Summary Results (continued)

		Baseline CARC System	CARC System Materials Manufacture	CARC System Use/Reuse Maintenance
LCI Components	Units	Quantity_	Quantity	Quantity
Functional Unit (FU)	ft^2	1,000		
MEK	Ib/FU	4.0E-02	1.6E-02	2.4E-02
Hexyl acetate	Ib/FU	3.5E-02	0.0E+00	3.5E-02
Ethane Naphtha	Ib/FU Ib/FU	3.5E-02 3.4E-02	3.5E-02 0.0E+00	0.0E+00
Xylene	lb/FU	3.2E-02	6.8E-03	3.4E-02 2.5E-02
Pentane	lb/FU	3.0E-02	3.0E-02	0.0E+00
Fluorine	lb/FU	2.0E-02	2.0E-02	0.0E+00
Cumene	I b/ FU	1.9E-02	1.9E-02	0.0E+00
Organic Acids	Ib/FU	1.8E-02	1.8E-02	0.0E+00
Butyl alcohol	Ib/FU	1.8E-02	0.0E+00	1.8E-02
Phenol	lb/FU	1.6E-02	1.6E-02	0.0E+00
Formaldehyde	Ib/FU Ib/FU	1.5E-02 1.4E-02	1.5E-02	0.0E+00
MIBK Aldehydes	lb/FU	1.4E-02 1.4E-02	8.0E-03 1.4E-02	6.4E-03 0.0E+00
Aromatic hydrocarbons	lb/FU	1.2E-02	2.9E-04	1.2E-02
C-7 cycloparaffins	ib/FU	8.8E-03	8.8E-03	0.0E+00
Acetone	Ib/FU	6.1E-03	6.1E-03	0.0E+00
Ethylene dichloride	Ib/FU	5.6E-03	5.6E-03	0.0E+00
HCN	lb/FU	4.9E-03	4.9E-03	0.0E+00
C-8 cycloparaffins	Ib/FU	3.2E-03	3.2E-03	0.0E+00
Ethyl chloride	Ib/FU	2.2E-03	2.2E-03	0.0E+00
Iso-Butane	Ib/FU	2.1E-03	2.1E-03	0.0E+00
Ethylene	lb/FU	2.1E-03	2.1E-03	0.0E+00
Carbon tetrachloride	Ib/FU	2.0E-03	2.0E-03	0.0E+00
Trichloroethane	Ib/FU Ib/FU	1.7E-03 1.6E-03	1.7E-03 1.6E-03	0.0E+00 0.0E+00
Ethylbenzene Vinyl chloride	Ib/FU	1.0E-03	1.0E-03	0.0E+00
Chloroform	lb/FU	9.7E-04	9.7E-04	0.0E+00
Hydrochloric acid	Ib/FU	9.5E-04	9.5E-04	0.0E+00
Lead	lb/FU	6.3E-04	6.3E-04	0.0E+00
Ammonia	lb/FU	4.5E-06	4.5E-06	0.0E+00
Kerosene	Ib/FU	3.2E-09	3.2E-09	0.0E+00
Naphthalene	Ib/FU	0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00
Methanol Butyl cellosolve	Ib/FU Ib/FU	0.0E+00 0.0E+00	0.0E+00	0.0E+00
Nitric acid	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Bromotrifluoromethane	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Nitroethane	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Dichlorodifluoromethane	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Sulfuric acid	lb/FU	0.0E+00	0.0E+00	0.0E+00
Bromochlorodifluoromethane	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Acetonitrile	lb/FU	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00
2-nitropropane 1,2-butylene	IMFU IMFU	0.0E+00	0.0E+00	0.0E+00
Propylene	lb/FU	0.0E+00	0.0E+00	0.0E+00
MPK	Ib/FU	0.0E+00	0.0E+00	0.0E+00
isopropyl alcohol	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Propyl acetate Aliphatic hydrocarbons	Ib/FU Ib/FU	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00
Wastewater Emissions		0.45.00	0.45.00	0.85.00
Wastewater	lb/FU	2.4E+03 1.2E+02	2.4E+03 1.2E+02	0.0E+00 0.0E+00
WW Reinj'd WW Discharg.	Ib/FU Ib/FU	1.2E+02 5.2E+01	1.2E+02 5.2E+01	0.0E+00
Mobile ions	ib/FU	2.5E+01	2.5E+01	0.0E+00
WW Injected	Ib/FU	1.7E+01	1.7E+01	0.0E+00
Sodium	Ib/FU	1.1E+01	1.1E+01	0.0E+00
Chloride	Ib/FU	8.3E+00	8.3E+00	0.0E+00
Oil and Grease	Ib/FU	2.6E-01	2.6E-01	0.0E+00
Titanium dioxide	Ib/FU	9.4E-02	9.4E-02	0.0E+00
Chlorine	Ib/FU	2.8E-02	2.8E-02	0.0E+00
Boron	Ib/FU Ib/FU	1.1E-02 3.6E-03	1.1E-02 3.6E-03	0.0E+00 0.0E+00
Cadmium	ID/FO	3.02-03	. 3.02-03	U.ULTUU

Table 6-3. Alternative Gun CARC System Life Cycle Inventory Summary Results (continued)

LCI Components	Units	Baseline CARC System Quantity	CARC System Materials Manufacture Quantity	CARC System Use/Reuse Maintenance Quantity
Functional Unit (FU)	ft^2	1,000		
Lead	Ib/FU	1.3E-03	1.3E-03	0.0E+00
Benzene	lb/FU	5.2E-04	5.2E-04	0.0E+00
Aluminum	1b/FU	4.3E-04	4.3E-04	0.0E+00
Chromium	Ib/FU	4.0E-04	4.0E-04	0.0E+00
Vanadium	Ib/FU	9.4E-05	9.4E-05	0.0E+00
Copper	lb/FU	3.0E-05	3.0E-05	0.0E+00
Zinc	lb/FU	3.0E-05	3.0E-05	0.0E+00
Arsenic	lb/FU	2.2E-05	2.2E-05	0.0E+00
fron	Ib/FU	5.9E-06	5.9E-06	0.0E+00
Mercury	lb/FU	4.4E-06	4.4E-06	0.0E+00
Thallium	Ib/FU	3.8E-06	3.8E-06	0.0E+00
Dissolved Solids	ib/FU	5.0E-07	5.0E-07	0.0E+00
Magnesium	Ib/FU	8.5E-08	8.5E-08	0.0E+00
Sulfuric Acid	lb/FU	6.8E-08	6.8E-08	0.0E+00
COD	ib/FU	3.3E-09	3.3E-09	0.0E+00
Suspended Solids	ib/FU	1.7E-09	1.7E-09	0.0E+00
BOD	lb/FU	9.9E-10	9.9E-10	0.0E+00
Acid	1b/FU	5.5E-10	5.5E-10	0.0E+00
Oil	Ib/FU	5.5E-10	5.5E-10	0.0E+00
Metals	lb/FU	2.7E-10	2.7E-10	0.0E+00
Phenol	lb/FU	2.7E-10	2.7E-10	0.0E+00
Sulfide	lb/FU	2.7E-10	2.7E-10	0.0E+00
Ammonia	lb/FU	0.0E+00	0.0E+00	0.0E+00
Hydrogen cyanide	. Ib/FU	0.0E+00	0.0E+00	0.0E+00
Solid Wastes				
Hazardous Wastes	Ib/FU	8.0E+01	1.7E+00	7.8E+01
Solid Wastes	I b /FU	5.3E+01	5.3E+01	0.0E+00
U238	Ib/FU	3.9E-09	3.9E-09	0.0E+00
Fly Ash	Ib/FU	1.5E-09	1.5E-09	0.0E+00
FGD Solids	Ib/FU	5.7E-10	5.7E-10	0.0E+00
Bottom Ash	lb/FU	4.1E-10	4.1E-10	0.0E+00
Slag	Ib/FU	1.6E-10	1.6E-10	0.0E+00
U235	Ib/FU	3.3E-11	3.3E-11 2.7E-11	0.0E+00 0.0E+00
Pu (fissile)	Ib/FU	2.7E-11 1.9E-11	2.7E-11 1.9E-11	0.0E+00
Fission Products	Ib/FU	1.9E-11 1.0E-11	1.9E-11 1.0E-11	0.0E+00
Pu (nonfissile)	Ib/FU Ib/FU	2.6E-12	2.6E-12	0.0E+00
U236 Methanol	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Methanioi Ammonia	Ib/FU	0.0E+00	0.0E+00	0.0E+00
	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Nitric acid Naphathalene	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Formaldehyde	Ib/FU	0.0E+00	0.0E+00	0.0E+00
2-nitropropane	lb/FU	0.0E+00	0.0E+00	0.0E+00
Acetonitrile	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Acetonitrile	ib/FU	0.0E+00	0.0E+00	0.0E+00
Acetaldehyde	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Hydrogen cyanide	Ib/FU	0.0 <u>E+0</u> 0	0.0E+00	0.0E+00

Table 6-4. Alternative Primer & Gun CARC System Life Cycle Inventory Summary Results

			Baseline CARC System	CARC System Materials Manufacture	CARC System Use/Reuse Maintenance
Resource and Energy Consumption Electricity STUPU S.6E+05 S.6E+05 O.E+06 Steam STUPU S.5E+05 S.6E+05 O.E+06			Quantity		
Electricity	Functional Unit (FU)	ft^2	1,000		
Natural gas	Resource and Energy Consumption				
Steam	Electricity	BTU/FU		5.6E+05	0.0E+00
Fuel Water	_				0.0E+00
Water					0.0E+00
Crude oil Imperiment Impe					0.0E+00
Air bbFU 8.4E+01 9.0E+01 0.0E+01 0.0E+01 Refinery gases bbFU 8.4E+01 4.9E+01 4.9E+01 0.0E+01 Refinery gases bbFU 3.1E+01 3.1E+01 0.0E+01 Chlorine bbFU 3.1E+01 1.1E+01 1.1E+01 0.0E+01 Chlorine bbFU 9.7E+00 9.7E+00 9.7E+00 0.0E+01 Chlorine bbFU 7.7E+00 7.2E+00 0.0E+01 Chlorine bbFU 7.7E+00 7.2E+00 0.0E+01 Chlorine chlorine bbFU 7.7E+00 7.2E+00 0.0E+01 Chlorine chlorine bbFU 7.7E+00 7.2E+00 0.0E+01 Chlorine chlorine bbFU 4.7E+00 5.9E+00 0.0E+01 Chlorine chlorine bbFU 3.3E+00 3.3E+00 0.0E+01 Chlorine chlorine bbFU 3.3E+00 3.3E+00 0.0E+01 Chlorine chlorine bbFU 2.9E+00 2.8E+00 0.0E+01 Chlorine chlorine bbFU 3.3E+00 3.3E+00 0.0E+01 Chlorine chlorine bbFU 1.1E+00 2.8E+00 0.0E+01 Chlorine chlorine bbFU 1.1E+00 0.0E+01 Chlorine chlorine bbFU 1.1E+00 0.0E+01 Chlorine chlorine bbFU 1.1E+00 0.0E+01 Chlorine bbFU 1.1E+00 0.0E+01 Chlorine chlorine bbFU 1.1E+00 0.0E+01 Chlorine bbFU 1.1E+00 0.0E+00	Water		2.9E+04	2.9E+04	0.08+00
Baude	Crude oil	Ib/FU		1.8E+03	0.0E+00
Refinery gases IDFU 4.9E+01 4.9E+01 0.0E+02	Air	Ib/FU	9.0E+01	9.0E+01	0.0E+00
Sodium Chloride	Bauxite	Ib/FU	8.4E+01	8.4E+01	0.0E+00
Display Disp	Refinery gases	lb/FU	4.9E+01	4.9E+01	0.0E+00
Silica Ib/FU 9.7E+00 9.7E+00 0.0E+00	Sodium Chloride	lb/FU	3.1E+01	3.1E+01	0.0E+00
Silica Ib/FU 9.7E+00 9.7E+00 9.6E+00 0.0E+00	Chlorine	lb/FU	1.1E+01	1.1E+01	0.0E+00
Oxygen	Silica	lb/FU	9.7E+00		
Rumente IDPU			9.6E+00		
Sulfuric acid In-PU	• •				_
Limestone	· -				
Difful 33E-00					
Immente					
Soda ash					
Magnesium ore Ib/FU 1.8E-00 1.8E-00 0.0E-00 Coke Ib/FU 1.3E-00 1.3E-00 0.0E-00 Ion ore Ib/FU 9.7E-01 9.7E-01 0.0E-00 Cobalt oxide Ib/FU 7.2E-01 7.2E-01 0.0E-00 Sodium hydroxide Ib/FU 2.9E-01 2.9E-01 0.0E-00 Magnetite Ib/FU 2.9E-01 2.9E-01 0.0E-00 Starch Ib/FU 2.9E-01 2.9E-01 0.0E-00 Hydrozarbons C8 to C10 Ib/FU 8.8E-02 8.6E-02 0.0E-00 SSAI Ib/FU 3.4E-02 3.4E-02 0.0E-00 Hydropotential Ib/FU 3.4E-02 3.4E-02 0.0E-00 Sulfur dioxide Ib/FU 1.9E-03 1.9E-03 0.0E-00 Coal Ib/FU 1.9E-03 1.9E-03 0.0E-00 Sulfur dioxide Ib/FU 1.9E-05 1.2E-05 0.0E-00 Sulfur dioxide Ib/FU 1.9E-03 1.9E-03 0.0E-00					
Coke					
Iron ore	Magnesium ore				0.0E+00
Cabelt oxide	Coke	Ib/FU		1.3E+00	0.0E+00
Sodium hydroxide	Iron ore	Ib/FU		9.7E-01	0.0€+00
Magnetité Ib/FU 2 9E-01 2 9E-01 0 0E+00 Slarch Ib/FU 2 1E-01 2 1E-01 0.0E+00 Hydrocarbons C8 to C10 Ib/FU 6.8E-02 6.8E-02 0.0E+00 SIAI Ib/FU 6.8E-02 6.8E-02 0.0E+00 Phosphorio acid Ib/FU 3.4E-02 3.4E-02 0.0E+00 Hydropotential m°3-m/FU 4.6E-03 3.6E-03 0.0E+00 Sulfur dioxide Ib/FU 1.6E-03 1.6E-03 0.0E+00 Colal Ib/FU 1.2E-05 1.2E-05 0.0E+00 Colal Ib/FU 3.2E-06 3.2E-06 0.0E+00 Colal Individual Ib/FU 3.2E-06 3.2E-06 0.0E+00 Colal Individual Ib/FU 3.2E-06 3.2E-06 0.0E+00 Discibilitate Fuel Oil Ib/FU 2.0E-07 2.8E-07 0.0E+00 Discibilitate Fuel Oil Ib/FU 2.0E+02 0.0E+00 0.0E+00 Discibilitate Fuel Oil Ib/FU 2.0E+02 0.0E+00	Cobalt oxide	Ib/FU	7.2E-01	7.2E-01	0.0€+00
Starch Ib/FU	Sodium hydroxide	Ib/FU	3.8E-01	3.8E-01	0.0E+00
Hydrocarbons C8 to C10	Magnetite	Ib/FU	2.9E-01	2.9E-01	0.0E+00
SAI	Starch	Ib/FU	2.1E-01	2.1E-01	0.0E+00
Phosphoric acid Ib/FU	Hydrocarbons C8 to C10	Ib/FU	6.6E-02	6.6E-02	0.0E+00
Hydropotential m*3-m/FU 4.8E-0.3 4.6E-0.3 0.0E+0.0 Suifur dioxide ib/FU 1.5E-0.3 1.6E-0.3 0.0E+0.0 Coal ib/FU 1.5E-0.5 1.2E-0.5 0.0E+0.0 Coal ib/FU 1.2E-0.5 1.2E-0.5 0.0E+0.0 Residual Fuel Oil ib/FU 3.2E-0.6 3.2E-0.6 0.0E+0.0 Ib/FU 3.2E-0.6 3.2E-0.6 0.0E+0.0 Uranium ib/FU 2.8E-0.7 2.8E-0.7 0.0E+0.0 Uranium ib/FU 2.8E-0.7 2.8E-0.9 0.0E+0.0 Phosphate ore ib/FU 0.0E+0.0 0.	SIAI	Ib/FU	6.3E-02	6.3E-02	0.0E+00
Hydropotential m³3-m/FU 4.6E-03 4.6E-03 0.0E+00 Coal lb/FU 1.6E-03 1.6E-03 0.0E+00 Coal lb/FU 1.6E-03 1.6E-03 0.0E+00 Coal lb/FU 1.2E-05 1.2E-05 0.0E+00 Coal lb/FU 1.2E-05 1.2E-06 0.0E+00 Coal lb/FU 3.2E-06 3.2E-06 0.0E+00 Distillate Fuel Oil lb/FU 2.8E-07 2.8E-07 0.0E+00 Uranium lb/FU 2.8E-07 2.8E-09 0.0E+00 Uranium lb/FU 0.0E+00	Phosphoric acid	Ib/FU	3.4E-02	3.4E-02	0.0E+00
Suffer dioxide Ib/FU 1.6E-03 1.6E-03 0.0E+00 Residual Fuel Oil Ib/FU 1.2E-05 1.2E-05 0.0E+00 Residual Fuel Oil Ib/FU 2.8E-07 2.8E-07 0.0E+00 Distillate Fuel Oil Ib/FU 2.8E-09 2.8E-09 0.0E+00 Phosphate ore Ib/FU 0.0E+00 0.0E+00 0.0E+00 Proprietary Primer Ingredients Ib/FU 0.0E+00 0.0E+00 0.0E+00 Zinc ore Ib/FU 0.0E+00 0.0E+00 0.0E+00 Alf Emissions DE/CU 2.0E+02 2.0E+02 0.0E+00 SOX Ib/FU 2.1E+01 2.1E+01 0.0E+00 SOX Ib/FU 2.1E+01 2.1E+01 0.0E+00 VCC Ib/FU 4.1E+01 1.0E+01 0.0E+00 NOX Ib/FU 4.3E+00 4.3E+00 0.0E+00 NOY Ib/FU 4.3E+00 4.3E+00 0.0E+00 NOY Ib/FU 4.3E+00 4.3E+00 0.0E+00 <	•	m^3-m/FU	4.6E-03	4.6E-03	0.0E+00
Direct	• •		1.6E-03		0.0E+00
Desidual Fuel Oil DirFU 3.2E-06 3.2E-06 0.0E+00 Distillate Fuel Oil DirFU 2.8E-07 2.8E-07 0.0E+00 Distillate Fuel Oil DirFU 2.8E-09 2.8E-09 0.0E+00 0.0E+00 Direthout DirFU 0.0E+00 0.0E+0			1.2E-05		0.0E+00
Distillate Fuel Oil Ib/FU 2.8E-07 2.8E-07 0.0E+00 Diranium Ib/FU 2.8E-09 2.8E-09 0.0E+00 0.0E+	-				
Uranium Ib/FU 2.8E-09 2.8E-09 0.0E+00 Phosphate ore Ib/FU 0.0E+00 0.0E+00 0.0E+00 Prophetary Primer Ingredients Ib/FU 0.0E+00 0.0E+00 0.0E+00 Zinc ore Ib/FU 0.0E+00 0.0E+00 0.0E+00 Air Emissions CO2 Ib/FU 2.0E+02 2.0E+02 0.0E+00 SCX Ib/FU 2.1E+01 2.1E+01 0.0E+00 VCC Ib/FU 1.0E+01 1.0E+01 0.0E+00 VCC Ib/FU 1.0E+01 1.0E+01 0.0E+00 VCC Ib/FU 4.4E+00 4.4E+00 0.0E+00 NOX Ib/FU 4.3E+00 4.3E+00 0.0E+00 NOX Ib/FU 4.3E+00 4.3E+00 0.0E+00 PM To Color Ib/FU 4.2E+01 4.2E-01 0.0E+00 PM To Color Ib/FU 4.2E-01 4.2E-01 0.0E+00 PM To Color Ib/FU 4.2E-01 4.2E-01 0.0E+00					
Phosphate ore Ib/FU 0.0E+00					
Proprietary Primer Ingredients Ib/FU 0.0E+00 0.0E+					
Air Emissions Section	,				
Ib/FU 2.0E+02 2.0E+02 0.0E+00	Zinc ore				
	Air Emissions				
1.0E+01	002	Ib/FU	2.0E+02	2.0E+02	0.0E+00
NOC Ib/FU	SOx	lb/FU	2.1E+01	2.1E+01	0.0E+00
Ib/FU		lb/FU	1.0E+01	1.0E+01	0.0E+00
NOx Ib/FU 4.3E+00 4.3E+00 0.0E+00			4.4E+00		0.0E+00
hydrocarbons hyFU 2.1E+00 2.1E+00 0.0E+00 0.			4.3E+00		0.0E+00
Ib/FU 5.8E-01 5.8E-01 0.0E+00			2.1E+00		0.0E+00
Description	-				
Decoration					
Ib/FU 2.6E-01 2.6E-01 0.0E+00					
Methane Ib/FU 1.8E-01 1.8E-01 0.0E+00 Benzene Ib/FU 1.5E-01 1.5E-01 0.0E+00 Benzene Ib/FU 1.4E-01 1.4E-01 0.0E+00 Ieavy Aromatics Ib/FU 8.8E-02 8.8E-02 0.0E+00 Ioluene Ib/FU 8.8E-02 5.5E-02 0.0E+00 Heytane Ib/FU 5.5E-02 5.5E-02 0.0E+00 AlAK Ib/FU 4.8E-02 4.8E-02 0.0E+00 Propane Ib/FU 4.8E-02 4.8E-02 0.0E+00 Hexane Ib/FU 3.8E-02 3.8E-02 0.0E+00 Detane Ib/FU 3.7E-02 3.7E-02 0.0E+00 Octane Ib/FU 3.1E-02 3.1E-02 0.0E+00 Eylene Ib/FU 3.1E-02 3.1E-02 0.0E+00 Eylene Ib/FU 3.1E-02 3.1E-02 0.0E+00 Eylene Ib/FU 3.1E-02 3.1E-02 0.0E+00					
Senzene					
Beary Aromatics Ib/FU					
Ib/FU 8.8E-02 8.8E-02 0.0E+00 deptane Ib/FU 5.5E-02 5.5E-02 0.0E+00 MAK Ib/FU 5.1E-02 5.1E-02 0.0E+00 Propane Ib/FU 4.8E-02 4.8E-02 0.0E+00 Hexane Ib/FU 4.3E-02 4.3E-02 0.0E+00 Butane Ib/FU 3.8E-02 3.8E-02 0.0E+00 Octane Ib/FU 3.7E-02 3.7E-02 0.0E+00 Icetaldehyde Ib/FU 3.1E-02 3.1E-02 0.0E+00 Iylene Ib/FU 3.1E-02 3.1E-02 0.0E+00 Ithane Ib/FU 3.1E-02 3.1E-02 0.0E+00 Pentane Ib/FU 2.7E-02 2.7E-02 0.0E+00					
Heptane Ib/FU 5.5E-02 5.5E-02 0.0E+00 MIAK Ib/FU 5.1E-02 5.1E-02 0.0E+00 Propane Ib/FU 4.8E-02 4.8E-02 0.0E+00 Personance Ib/FU 4.3E-02 4.3E-02 0.0E+00 P-Butane Ib/FU 3.8E-02 3.8E-02 0.0E+00 Octane Ib/FU 3.7E-02 3.7E-02 0.0E+00 Octane Ib/FU 3.1E-02 3.1E-02 0.0E+00 Eylene Ib/FU 3.1E-02 3.1E-02 0.0E+00 Ethane Ib/FU 3.1E-02 3.1E-02 0.0E+00 Pentane Ib/FU 2.7E-02 2.7E-02 0.0E+00					
AIAK Ib/FU 5.1E-02 5.1E-02 0.0E+00 Propane Ib/FU 4.8E-02 4.8E-02 0.0E+00 Persone Ib/FU 4.3E-02 4.3E-02 0.0E+00 -Butane Ib/FU 3.8E-02 3.8E-02 0.0E+00 Octane Ib/FU 3.7E-02 3.7E-02 0.0E+00 Acetaldehyde Ib/FU 3.1E-02 3.1E-02 0.0E+00 Kylene Ib/FU 3.1E-02 3.1E-02 0.0E+00 Ethane Ib/FU 3.1E-02 3.1E-02 0.0E+00 Pentane Ib/FU 2.7E-02 2.7E-02 0.0E+00					
Propane Ib/FU 4.8E-02 4.8E-02 0.0E+00 Hexane Ib/FU 4.3E-02 4.3E-02 0.0E+00 I-Butane Ib/FU 3.8E-02 3.8E-02 0.0E+00 Octane Ib/FU 3.7E-02 3.7E-02 0.0E+00 Keetaldehyde Ib/FU 3.1E-02 3.1E-02 0.0E+00 Kylene Ib/FU 3.1E-02 3.1E-02 0.0E+00 Ethane Ib/FU 3.1E-02 3.1E-02 0.0E+00 Pentane Ib/FU 2.7E-02 2.7E-02 0.0E+00					
dexane lb/FU 4.3E-02 4.3E-02 0.0E+00 i-Butane lb/FU 3.8E-02 3.8E-02 0.0E+00 loctane lb/FU 3.7E-02 3.7E-02 0.0E+00 locetaldehyde lb/FU 3.1E-02 3.1E-02 0.0E+00 kylene lb/FU 3.1E-02 3.1E-02 0.0E+00 ethane lb/FU 3.1E-02 3.1E-02 0.0E+00 eentane lb/FU 2.7E-02 2.7E-02 0.0E+00					
Butane					
Octane Ib/FU 3.7E-02 3.7E-02 0.0E+00 Acetaldehyde Ib/FU 3.1E-02 3.1E-02 0.0E+00 Kylene Ib/FU 3.1E-02 3.1E-02 0.0E+00 Ethane Ib/FU 3.1E-02 3.1E-02 0.0E+00 Pentane Ib/FU 2.7E-02 2.7E-02 0.0E+00					
Acetaldehyde Ib/FU 3.1E-02 3.1E-02 0.0E+00 Kylene Ib/FU 3.1E-02 3.1E-02 0.0E+00 Ethane Ib/FU 3.1E-02 3.1E-02 0.0E+00 Pentane Ib/FU 2.7E-02 2.7E-02 0.0E+00	-Butane				
Kylene Ib/FU 3.1E-02 3.1E-02 0.0E+00 Ethane Ib/FU 3.1E-02 3.1E-02 0.0E+00 Pentane Ib/FU 2.7E-02 2.7E-02 0.0E+00	Octane	lb/FU		3.7E-02	0.0E+00
thane Ib/FU 3.1E-02 3.1E-02 0.0E+00 Pentane Ib/FU 2.7E-02 2.7E-02 0.0E+00	Acetaldehyde	Ib/FU	3.1E-02	3.1E-02	
thane lb/FU 3.1E-02 3.1E-02 0.0E+00 rentane lb/FU 2.7E-02 2.7E-02 0.0E+00	iylene	Ib/FU	3.1E-02		0.0E+00
Pentane Ib/FU 2.7E-02 2.7E-02 0.0E+00	thane	Ib/FU	3.1E-02		
	Pentane				
	Butyl alcohol	Ib/FU		0.0E+00	2.2E-02

6-12

Table 6-4. Alternative Primer & Gun CARC System Life Cycle Inventory Summary Results (cont.)

		Baseline CARC System	CARC System Materials Manufacture	CARC System Use/Reuse Maintenance
LCI Components	Units	Quantity	Quantity	Quantity
Functional Unit (FU)	ft^2	1,000		
Aromatic hydrocarbons	lb/FU	2.0E-02	0.0E+00	2.0E-02
Cumene	lb/FU	1.6E-02	1.6E-02	0.0E+00
MEK	lb/FU	1.6E-02	1.6E-02	0.0E+00
Organic Acids	Ib/FÜ	1.6E-02	1.6E-02	0.0E+00
Phenol	lb/FU	1.5E-02	1.5E-02	0.0E+00
Formaldehyde	Ib/FU	1.4E-02	1.4E-02	0.0E+00
Aldehydes	lb/FU	1.2E-02	1.2E-02	0.0E+00
C-7 cycloparaffins	lb/FU	7.8E-03	7.8E-03	0.0E+00
Acetone	lb/FU	5.4E-03	5.4E-03	0.0E+00
HCN	lb/FU	4.9E-03	4.9E-03	0.0E+00
Ethylbenzene	lb/FU	3.2E-03	3.2E-03	0.0E+00
C-8 cycloparaffins	lb/FU	2.9E-03	2.9E-03	0.0E+00
Nitroethane	lb/FU	2.0E-03	0.0E+00	2.0E-03
iso-Butane	lb/FU	1.9E-03	1.9E-03	0.0E+00
Hydrochloric acid	lb/FU	1.4E-03	1,4E-03	0.0E+00
Dichlorodifluoromethane	Ib/FU	8.0E-04	8.0E-04	0.0E+00
Ammonia	Ib/FU	6.4E-04	6.4E-04	0.0E+00
Naphthalene	lb/FU	4.6E-04	4.6E-04	0.0E+00
2-nitropropane	lb/FU	4.4E-04	4.4E-04	0.0E+00
Ethylene	lb/FU	4.3E-04	4.3E-04	0.0E+00
Acetonitrile	Ib/FU	1.7E-05	1.7E-05	0.0E+00
Methanol	Ib/FU	1.4E-05	1.4E-05	0.0E+00
Bromotrifluoromethane	Ib/FU	6.0E-06	6.0E-06	0.0E+00
Nitric acid	Ib/FU	4.0E-06	4.0E-06	0.0E+00
Bromochlorodifluoromethane	Ib/FU	1.6E-06	1.6E-06	0.0E+00
1,2-butylene	Ib/FU	5.0E-07	5.0E-07	0.0E+00
Kerosene	Ib/FU Ib/FU	3.0E-09 6.6E-11	3.0E-09	0.0E+00 0.0E+00
Lead	Ib/FU	0.0E+00	6.6E-11 0.0E+00	0.0E+00
Hexyl acetate		0.0E+00 0.0E+00	0.0E+00	0.0E+00
Propylene Sulfurio poid	lb/FU lb/FU	0.0E+00	0.0E+00	0.0E+00
Sulfuric acid	ib/FU	0.0E+00 0.0E+00	0.0E+00	0.0E+00
Ethyl chloride	lb/FU	0.0E+00	0.0E+00	0.0E+00
Vinyl chloride	lb/FU	0.0E+00	0.0E+00	0.0E+00
Isopropyl alcohol MPK	lb/FU	0.0E+00	0.0E+00	0.0E+00
MCK Propyl acetate	lb/FU	0.0E+00	0.0E+00	0.0E+00
Naphtha	lb/FU	0.0E+00	0.0E+00	0.0E+00
Sutyl acetate	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Fluorine	Ib/FU	0.0E+00	0.0E+00	0.0E+00
MIBK	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Trichloroethane	lb/FU	0.0E+00	0.0E+00	0.0E+00
Carbon tetrachloride	lb/FU	0.0E+00	0.0E+00	0.0E+00
Chloroform	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Butyl cellosolve	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Ethylene dichloride	lb/FU	0.0E+00	0.0E+00	0.0E+00
Aliphatic hydrocarbons	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Wastewater Emissions	1L N=1 1	2.45,02	0.45.03	0.05+00
Wastewater	Ib/FU	2.1E+03	2.1E+03	0.0E+00
AW Reinj'd	Ib/FU	1.0E+02	1.0E+02	0.0E+00
W Discharg.	Ib/FU	4.6E+01	4.6E+01	0.0E+00
Mobile ions	Ib/FU	2.3E+01	2.3E+01	0.0E+00
W Injected	ib/FU	1.5E+01	1.5E+01	0.0E+00 0.0E+00
Sodium	Ib/FU	9.3E+00 7.4E+00	9.3E+00	
Chloride	Ib/FU	7.4E+00 2.3E-01	7.4E+00	0.0E+00 0.0E+00
Dil and Grease Fitanium dioxide	Ib/FU Ib/FU	2.3E-01 1.5E-01	2.3E-01 1.5E-01	0.0E+00
i itanium gioxide Chlorine	Ib/FU	8.7E-02	8.7E-01	0.0E+00
Soron	Ib/FU	9.8E-03	9.8E-03	0.0E+00
Soron Cadmium	ib/FU	5.7E-03	5.7E-03	0.0E+00
_ead	Ib/FU	2.1E-03	2.1E-03	0.0E+00
	Ib/FU	7.0E-04	7.0E-04	0.0E+00
Aluminum			7.05-04	0.00,000
Aluminum			AE_∩∆	ሀ ሀ⊏ተሀሀ
Chromium	Ib/FU	6.4E-04	6.4E-04 4.6F-04	0.0E+00 0.0E+00
			6.4E-04 4.6E-04 1.5E-04	0.0E+00 0.0E+00 0.0E+00

Table 6-4. Alternative Primer & Gun CARC System Life Cycle Inventory Summary Results (cont.)

I Cl Components	Units	Baseline CARC System Quantity	CARC System Materials Manufacture Quantity	CARC System Use/Reuse Maintenance Quantity
LCI Components Functional Unit (FU)	ft^2	1,000	Quantity	Quantity
, ,		·		
Zinc	ib/FU	4.9E-05	4.9E-05	0.0E+00
Arsenic	lb/FU	1.9E-05	1.9E-05	0.0E+00
Iron	lb/FU	5.4E-06	5.4E-06	0.0E+00
Mercury	Ib/FU	4.2E-06	4.2E-06	0.0E+00
Thallium	Ib/FU	3.4E-06	3.4E-06	0.0E+00
Ammonia	Ib/FU	1.3E-06	1.3E-06	0.0E+00
Dissolved Solids	Ib/FU	4.6E-07	4.6E-07	0.0E+00
Magnesium	Ib/FU	1.4E-07	1.4E-07	0.0E+00
Hydrogen cyanide	Ib/FU ·	8.4E-08	8.4E-08	0.0E+00
Sulfuric Acid	Ib/FU	6.3E-08	6.3E-08	0.0E+00
COD	Ib/FU	3.0E-09	3.0E-09	0.0E+00
Suspended Solids .	Ib/FU	1.6E-09	1.6E-09	0.0E+00
BOD	lb/FU	9.1E-10	9.1E-10	0.0E+00
Acid	lb/FU	5.0E-10	5.0E-10	0.0E+00
Oil	lb/FU	5.0E-10	5.0E-10	0.0E+00
Metals	lb/FU	2.5E-10	2.5E-10	0.0E+00
Phenol	Ib/FU	2.5E-10	2.5E-10	0,0E+00
Sulfide	Ib/FU	2.5E-10	2.5E-10	0.0E+00
Solid Wastes				
Hazardous Wastes	Ib/FU	7.9E+01	7.0E-01	7.8E+01
Solid Wastes	Ib/FU	5.3E+01	5.3E+01	0.0E+00
Acetaldehyde	lb/FU	7.5E-03	7.5E-03	0.0E+00
Methanol	· lb/FU	6.6E-03	6.6E-03	0.0E+00
2-nitropropane	lb/FU	5.8E-03	5.8E-03	0.0E+00
Acetone	lb/FU	4.0E-03	4.0E-03	0.0E+00
Acetonitrile	lb/FU	3.3E-03	3.3E-03	0.0E+00
Nitric acid	Ib/FU	4.6E-04	4.6E-04	0.0E+00
Ammonia	lb/FU	1.0E-04	1:0E-04	0.0E+00
Formaldehyde	lb/FU	5.7E-05	5.7E-05	0.0E+00
Naphathalene	Ib/FU	4.8E-06	4.8E-06	0.0E+00
Hydrogen cyanide	Ib/FU	4.8E-06	4.8E-06	0.0E+00
U238	Ib/FU	3.6E-09	3.6E-09	0.0E+00
Fly Ash	Ib/FU	1.4E-09	1.4E-09	0.0E+00
FGD Solids	Ib/FU	5.2E-10	5.2E-10	0.0E+00
Bottom Ash	Ib/FU	3.8E-10	3.8E-10	0.0E+00
Slag	Ib/FU	1.4E-10	1.4E-10	0.0E+00
U235	lb/FU	3.0E-11	3.0E-11	0,0E+00
Pu (fissile)	lb/FU	2.5E-11	2.5E-11	0.0E+00
Fission Products	1b/FU	1.7E-11	1.7E-11	0.0E+00
Pu (nonfissile)	Ib/FU	9.5E-12	9.5E-12	0.0E+00
U236	Ib/FU	2.4E-12	2.4E-12	0.0E+00

Table 6-5. Alternative Thinner CARC System Life Cycle Inventory Summary Results

		Baseline CARC System	CARC System Materials Manufacture	CARC System Use/Reuse Maintenance
LCI Components	Units	Quantity	Quantity	Quantity
Functional Unit (FU)	ft^2	1,000		
Resource and Energy Consumption				
Electricity	BTU/FU	7.7E+05	7.7E+05	0.0E+00
Natural gas	BTU/FU	1.3E+07	1.3E+07	0.0E+00
Steam	BTU/FU	5.5E+05	5.5E+05	0.0E+00
Water	lb/FU	4.0E+04	4.0E+04	0.0E+00
Fuel	lb/FU	3.9E+04	3.9E+04	0.0E+00
Crude oil	lb/FU	2.4E+03	2.4E+03	0.0E+00
Bauxite	lb/FU	8.4E+01	8.4E+01	0.0E+00
Air	lb/FU	7.6E+01	7.6E+01	0.0E+00
Refinery gases	lb/FU	6.8E+01	6.8E+01	0.0E+00
Sodium Chloride	Ib/FU	4.3E+01	4.3E+01	0.0E+00
Oxygen	Ib/FU	1.4E+01	1.4E+01	0.0E+00
Silica	Ib/FU	1.4E+01	1.4E+01	0.0E+00
Chlorine	Ib/FU	1.3E+01	1.3E+01	0.0E+00
Zinc ore	ib/FU	8.3E+00	8.3E+00	0.0E+00
Rumenite	ib/FU	6.1E+00	6.1E+00	0.0E+00
Sulfuric acid	Ib/FU	6.0E+00	6.0E+00	0.0E+00
Limestone	Ib/FU	4.7E+00	4.7E+00	0.0E+00
Chrome oxide	Ib/FU	4.6E+00	4.6E+00	0.0E+00
Soda ash	Ib/FU	2.6E+00	2.6E+00	0.0E+00
Ilmenite	lb/FU	2.4E+00	2.4E+00	0.0E+00
Magnesium ore	lb/FU	2.2E+00	2.2E+00	0.0E+00
Phosphate ore	Ib/FU	2.1E+00	2.1E+00	0.0E+00
Iron ore	lb/FU	1.3E+00	1.3E+00	0.0E+00
Coke	Ib/FU	1.1E+00	1.1E+00	0.0E+00
Cobalt oxide	Ib/FU	1.0E+00	1.0E+00	0.0E+00
Magnetite	Ib/FU	4.0E-01 3.2E-01	4.0E-01	0.0E+00
Sodium hydroxide Coal	Ib/FU Ib/FU	3.2E-01 2.9E-01	3.2E-01 2.9E-01	0.0E+00 0.0E+00
Coal Starch	Ib/FU	2.9E-01 2.1E-01	2.9E-01 2.1E-01	0.0E+00
SiAI	Ib/FU	5.4E-02	5.4E-02	0.0E+00
Phosphoric acid	Ib/FU	4.8E-02	4.8E-02	0.0E+00
Hydrocarbons C8 to C10	Ib/FU	1.7E-02	1.7E-02	0.0E+00
Hydropotential	m^3-m/FU	6.3E-03	6.3E-03	0.0E+00
Sulfur dioxide	Ib/FU	2.2E-03	2.2E-03	0.0E+00
Residual Fuel Oil	Ib/FU	4.5E-06	4.5E-06	0.0E+00
Distillate Fuel Oil	lb/FU	3.9E-07	3.9E-07	0.0E+00
Uranium	ib/FU	3.8E-09	3.8E-09	0.0E+00
Proprietary Primer Ingredients	lb/FU	0.0E+00	0.0E+00	0.0E+00
, ,				
Air Emissions				
CO2	Ib/FU	2.7E+02	2.7E+02	0.0E+00
SOx	Ib/FU	2.1E+01	2.1E+01	0.0E+00
voc	Ib/FU	1.4E+01	1.4E+01	0.0E+00
PM	Ib/FU	5.9E+00	5.9E+00	0.0E+00
NOx	Ib/FU	5.9E+00	5.9E+00	0.0E+00
Hydrocarbons	Ib/FU	3.0E+00	3.0E+00	0.0E+00
CO Obtains	Ib/FU	1.3E+00	1.3E+00	0.0E+00
Chlorine	16/FU 16/FU	5.8E-01 5.2E-01	5.8E-01 7.1E-02	0.0E+00 4.5E-01
MIAK		3.1E-01	3.1E-01	0.0E+00
PM10 Methane	Ib/FU Ib/FU	2.5E-01	2.5E-01	0.0E+00
Heavy Aromatics	lb/FU	2.0E-01	2.0E-01	0.0E+00
Butyl acetate	Ib/FU	1.4E-01	0.0E+00	1.4E-01
Benzene	Ib/FU	1.1E-01	1.1E-01	0.0E+00
Heptane	Ib/FU	7.6E-02	7.6E-02	0.0E+00
Propane	Ib/FU	6.6E-02	6.6E-02	0.0E+00
Naphtha	Ib/FU	6.6E-02	0.0E+00	6.6E-02
Hexane	Ib/FU	5.9E-02	5.9E-02	0.0E+00
Acetaldehyde	Ib/FU	5.4E-02	5.4E-02	0.0E+00
		5.3E-02	5.3E-02	0.0E+00
n-Butane	16/FU	J.JE-UZ		
n-Butane Octane	Ib/FU Ib/FU	5.1E-02	5.1E-02	0.0E+00

Table 6-5. Alternative Thinner CARC System Life Cycle Inventory Summary Results (continued)

		Baseline CARC	CARC System Materials	CARC System Use/Reuse
		System	Manufacture	Maintenance
LCI Components	Units	Quantity	Quantity	Quantity
Functional Unit (FU)	₹^2	1,000		
Pentane	lb/FU	3.7E-02	3.7E-02	0.0E+00
Butyl alcohol	Ib/FU	3.6E-02	0.0E+00	3.6E-02
Fluorine	Ib/FU	2.8E-02	2.8E-02	0.0E+00
Cumene	Ib/FU	2.7E-02	2.7E-02	0.0E+00
Toluene	lb/FU	2.4E-02	2.2E-02	1.6E-03
MIBK	lb/FU	2.3E-02	1.1E-02	1.2E-02
Aromatic hydrocarbons	lb/FU	2.3E-02	4.0E-04 2.2E-02	2.3E-02 0.0E+00
Organic Acids	lb/FU	2.2E-02 2.2E-02	2.2E-02 2.2E-02	0.0E+00
Phenol	Ib/FU Ib/FU	1.9E-02	1.9E-02	0.0E+00
Formaldehyde	Ib/FU	1.7E-02	1.7E-02	0.0E+00
Aldehydes	Ib/FU	1.1E-02	1.1E-02	0.0E+00
C-7 cycloparaffins	ib/FU	7.7E-03	7.7E-03	0.0E+00
Ethylene dichloride Acetone	Ib/FU	7.4E-03	7.4E-03	0.0E+00
HCN	ib/FU	6.7E-03	6.7E-03	0.0E+00
C-8 cycloparaffins	Ib/FU	3,9E-03	3.9E-03	0.0E+00
Ethyl chloride	Ib/FU	3.0E-03	3.0E-03	0.0E+00
Carbon tetrachloride	Ib/FU	2.8E-03	2.8E-03	0.0E+00
Iso-Butane	Ib/FU	2.6E-03	2.6E-03	0.0E+00
Ethylene	Ib/FU	2.5E-03	2.5E-03	0.0E+00
Trichloroethane	Ib/FU	2.3E-03	2.3E-03	0.0E+00
MEK	Ib/FU	2.2E-03	7.8E-04	1.5E-03
isopropyl alcohol	ib/FU	2.1E-03	0.0E+00	2.1E-03
Ethylbenzene	Ib/FU	2.1E-03	2.1E-03 0.0E+00	0.0E+00 1.7E-03
Aliphatic hydrocarbons	Ib/FU	1.7E-03 1.4E-03	1.4E-03	0.0E+00
Vinyl chloride	Ib/FU Ib/FU	1.4E-03	1.3E-03	0.0E+00
Chloroform	Ib/FU	1.3E-03	1.3E-03	0.0E+00
Hydrochloric acid Propylene	Ib/FU	1.1E-03	1:1E-03	0.0E+00
Lead	Ib/FU	8.8E-04	8.8E-04	0.0E+00
Sulfuric acid	Ib/FU	8.3E-05	8.3E-05	0.0E+00
Ammonia	Ib/FU	6.2E-06	6.2E-06	0.0E+00
Kerosene	lb/ FU	4.1E-09	4.1E-09	0.0E+00
Hexyl acetate	lb/FU	0.0E+00	0.0E+00	0.0E+00 0.0E+00
Dichlorodifluoromethane	Ib/FU	0.0E+00	0.0E+00 0.0E+00	0.0E+00
Nitroethane	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Nitric acid	Ib/FU	0.0E+00 0.0E+00	0.0E+00	0.0E+00
Naphthalene	Ib/FU Ib/FU	0.0E+00	0.0E+00	0.0E+00
Methanoi Bromochlorodifluoromethane	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Bromotrifluoromethane	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Isobutyraldehyde	lb/FU	0.0E+00	0.0E+00	0.0E+00
Acetonitrile	Ib/FU	0.0E+00	0.0E+00	0.0E+00
2-nitropropane	lb/FU	0.0E+00	0.0E+00	0.0E+00
1,2-butylene	lb/FU	0.0E+00	0.0E+00	0.0E+00
Propyl acetate	Ib/FU	0.0E+00	0.0E+00	0.0E+00 0.0E+00
Butyl cellosolve	Ib/FU	0.0E+00	0.0E+00 0.0E+00	0.0E+00
MPK	Ib/FU	0.0E+00	0.02700	Q.0L+00
Wastewater Emissions				
Wastewater Emissions	lb/FU	3.0E+03	3.0E+03	0.0E+00
WW Reini'd	Ib/FU	1.4E+02	1.4E+02	0.0E+00
WW Discharg.	Ib/FU	6.4E+01	6.4E+01	0.0E+00
Mobile ions	Ib/FU	3.1E+01	3.1E+01	0.0E+00
WW Injected	Ib/FU	2.1E+01	2.1E+01	0.0E+00
Sodium	lb/FU	1.3E+01	1.3E+01	0.0E+00
Chloride	ib/FU	1.0E+01	1.0E+01	0.0E+00
Oil and Grease	Ib/FU	3.2E-01	3.2E-01	0.0E+00 0.0E+00
Titanium dioxide	Ib/FU	1.3E-01 3.0E-02	1.3E-01 3.9E-02	0.0E+00
Chlorine	Ib/FU	3.9E-02 1.3E-02	1.3E-02	0.0E+00
Boron	Ib/FU Ib/FU	1.3E-02 4.9E-03	4.9E-03	0.0E+00
Cadmium	lb/FU	1.8E-03	1.8E-03	0.0E+00
Lead Benzona	Ib/FU	6.3E-04	6.3E-04	0.0E+00
Benzene	IDII O	 - ·		

Table 6-5. Alternative Thinner CARC System Life Cycle Inventory Summary Results (continued)

		Baseline CARC	CARC System Materials	CARC System Use/Reuse
		System	Manufacture	Maintenance
LCI Components	Units	Quantity	Quantity	Quantity
Functional Unit (FU)	₹^2	1,000		
Aluminum	I b/ F∪	5.9E-04	5.9E-04	0.0E+00
Chromium	lb/FU	5.5E-04	5.5E-04	0.0E+00
Vanadium	Ib/FU	1.3E-04	1.3E-04	0.0E+00
Copper	Ib/FU	4.1E-05	4.1E-05	0.0E+00
Zinc	lb/FU	4.1E-05	4.1E-05	0.0E+00
Arsenic	Ib/FU	2.6E-05	2.6E-05	0.0E+00
iron	Ib/FU	7.4E-06	7.4E-06	0.0E+00
Mercury	Ib/FU	5.5E-06	5.5E-06	0.0E+00
Thallium	Ib/FU	4.7E-06	4.7E-06	0.0E+00
Dissolved Solids	Ib/FU	6.3E-07	6.3E-07	0.0E+00
Magnesium	lb/FU	1.2E-07	1.2E-07	0.0E+00
Sulfuric Acid	Ib/FU	8.7E-08	8.7E-08	0.0E+00
COD	Ib/FU	4.2E-09	4.2E-09	0.0E+00
Suspended Solids	Ib/FU	2.2E-09	2.2E-09	0.0E+00
BOD	Ib/FU	1.3E-09	1.3E-09	0.0E+00
Acid	Ib/FU	7.0E-10	7.0E-10	0.0E+00
Qil	lb/FU	7.0E-10	7.0E-10	0.0E+00
Metals	Ib/FU	3.5E-10	3.5E-10	0.0E+00
Phenol	lb/FU	3.5E-10	3.5E-10	0.0E+00
Sulfide	lb/FU	3.5E-10	3.5E-10	0.0E+00
Ammonia	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Hydrogen cyanide	lb/FU	0.0E+00	0.0E+00	0.0E+00
Solid Wastes		•		
Hazardous Wastes	Ib/FU	8.1E+01	2.3E+00	7.8E+01
Solid Wastes	lb/FU	6.2E+01	6.2E+01	0.0E+00
U238	lb/FU	5.0E-09	5.0E-09	0.0E+00
Fly Ash	Ib/FU	1.9E-09	1.9E-09	0.0E+00
FGD Solids	lb/F∪	7.2E-10	7.2E-10	0.0E+00
Bottom Ash	lb/FU	5.3E-10	5.3E-10	0.0E+00
Slag	l b/ FU	2.0E-10	2.0E-10	0.0E+00
U235	Ib/FU	4.2E-11	4.2E-11	0.0E+00
Pu (fissile)	lb/FU	3.4E-11	3.4E-11	0.0E+00
Fission Products	Ib/FU	2.4E-11	2.4E-11	0.0E+00
Pu (nonfissile)	lb/F U	1.3E-11	1.3E-11	0.0E+00
U236	Ib/FU	3.3E-12	3.3E-12	0.0E+00
Methanol	lb/FU	0.0E+00	0.0E+00	0.0E+00
Ammonia	1b/FU	0.0E+00	0.0E+00	0.0E+00
Nitric acid	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Naphathalene	lb/FU	0.0E+00	0.0E+00	0.0E+00
Formaldehyde	Ib/FU	0.0E+00	0.0E+00	0.0E+00
2-nitropropane	lb/ FU	0.0E+00	0.0E+00	0.0E+00
Acetonitrile	1b/FU	0.0E+00	0.0E+00	0.0E+00
Acetone	њ/fU	0.0E+00	0.0E+00	0.0E+00
Acetaldehyde	I b/ FU	0.0E+00	0.0E+00	0.0E+00
Hvdrogen cyanide	lb/FU	0.0E+00	0.0E+00	0.0E+00

The fifth and final alternative utilized both an alternative thinner and alternative primer combined with the baseline gun (Table 6-6). As expected, the combined alternatives showed reduced resource and energy consumption in many areas including electricity, natural gas, steam, water, crude oil, air, and refinery gases. Increases were seen in fuel, sodium chloride, chlorine, rumenite, ilmenite mainly from the TiO₂ production stages. Major air emissions categories showed the expected reductions in CO₂, VOC, PM, NO_x, hydrocarbons, and CO. Slight increases were noted in minor organic chemical releases. Water usage and emissions were generally reduced, but increases were noted in the heavy metal content. Solid wastes were generally reduced with the exception of those from the nitroethane production processes.

The comparison of energy usage across the alternatives in comparison with the baseline is shown in Figure 6-1. This again illustrates the preferability of Alternative 2 (turbine HVLP gun) and Alternative 3 (gun plus primer substitution). A consistent reinforcement of this is observed in the solid/hazardous waste (Figure 6-2) and air pollutant (Figure 6-3) graphs as well.

6.2 Environmental Impact/Hazard Characterization

6.2.1 Impact Characterization

The environmental impact significance of the resource and emission data from the baseline and each alternative CARC LCI was characterized (evaluated) using the same set of equivalency factors derived during the baseline analysis (see Table 4-2). The importance of each individual resource or chemical within an impact category was determined by multiplying the equivalency factor times the inventory value in pounds per functional unit. The results of these calculations for each resource or emission are provided as "factored scores" within each of the nine impact categories in Appendix D. These "factored scores" are the basis for the environmental impact valuation results, which combine the results for the economic and performance assessments and the values from the AHP weighting factors in arriving at the conclusions regarding the best improvement opportunity.

The potential environmental impacts associated with each of the alternatives can be evaluated by comparing the normalized, factored, impact scores for each of the nine major impact categories (Table 6-7). As indicated by the bold scores in Table 6-7, the CARC system with the most (7 out of 9) low scores (least potential impacts) in each impact category is the option with both the alternative primer (water-thinned) and alternative spray gun (turbine). Use of the alternative gun decreases the use rates of topcoat, primer, and thinner, which reduces the potential environmental impact in all nine of the impact categories compared to the baseline.

Table 6-6. Alternative Primer and Thinner CARC System Life Cycle Inventory Summary Results

		Baseline CARC System	CARC System Materials Manufacture	CARC System Use/Reuse Maintenance
LCI Components	Units	Quantity	Quantity	Quantity
Functional Unit (FU)	ñ^2	1,000		
Barauraa and Energy Consumption				
Resource and Energy Consumption Electricity	BTU/FU	7.7E+05	7.4E+05	3.1E+04
Natural gas	BTU/FU	1.3E+07	1.3E+07	3.5E-03
Steam	BTU/FU	5.0E+05	5.0E+05	4.1E+03
Fuel	Ib/FU	6.4E+04	6.4E+04	0.0E+00
Water	Ib/FU	4.1E+04	4.1E+04	0.0E+00
Crude oil	Ib/FU	2.6E+03	2.3E+03	2.6E+02
Air	Ib/FU	1.2E+02	1.2E+02	0.0E+00
Bauxite	Ib/FU	8.4E+01	8.4E+01	0.0E+00
Refinery gases	Ib/FU	6.4E+01	6.4E+01	0.0E+00
Sodium Chloride	Ib/FU	4.3E+01	4.3E+01	0.0E+00
Chlorine	Ib/FU	1.5E+01 1.3E+01	1.5E+01	0.0E+00
Silica	ib/FU Ib/FU	1.2E+01	1.3E+01 1.2E+01	0.0E+00 0.0E+00
Oxygen Rumenite	Ib/FU	9.9E+00	9.9E+00	0.0E+00
Sulfuric acid	lb/FU	8.2E+00	8.2E+00	0.0E+00
Limestone	lb/FU	4.7E+00	4.7E+00	0.0E+00
Chrome oxide	Ib/FU	4.6E+00	4.6E+00	0.0E+00
Ilmenite	Ib/FU	3.9E+00	3.9E+00	0.0E+00
Soda ash	Ib/FU	2.6E+00	2.6E+00	0.0E+00
Magnesium ore	Ib/FU	2.2E+00	2.2E+00	0.0E+00
Coke	lb/FU	1.8E+00	1.8E+00	0.0E+00
Iron ore	1b/FU	1.3E+00	1.3E+00	0.0E+00
Cobalt oxide	lb/FU	1.0E+00	1.0E+00	0.0E+00
Sodium hydroxide	Ib/FU	5.3E-01	5.3E-01	0.0E+00
Magnetite	Ib/FU	4.0E-01	4.0E-01	0.0E+00
Starch	Ib/FU	2.1E-01	2.1E-01	0.0E+00
SiAI	Ib/FU	8.8E-02	8.8E-02	0.0E+00
Phosphoric acid	Ib/FU Ib/FU	4.8E-02 1.7E-02	4:8E-02 1.7E-02	0.0E+00 0.0E+00
Hydrocarbons C8 to C10 Hydropotential	m^3-m/FU	6.4E-03	6.1E-02	2.5E-04
Sulfur dioxide	Ib/FU	2.2E-03	2.2E-03	0.0E+00
Coal	ib/FU	1.6E-05	1.5E-05	0.0E+00
Residual Fuel Oil	Ib/FU	4.5E-06	4.3E-06	0.0E+00
Distillate Fuel Oil	Ib/FU	3.9E-07	3.8E-07	0.0E+00
Uranium	lb/FU	3.8E-09	3.7E-09	0.0E+00
Phosphate ore	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Proprietary Primer Ingredients	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Zinc ore	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Air Emissions				
CO2	Ib/FU	2.9E+02	2.6E+02	2.7E+01
SOx	Ib/FU	2.1E+01	2.1E+01	3.2E-02
VOC	Ib/FU	1.3E+01	1.3E+01	0.0E+00
NOx	Ib/FU	6.0E+00	5.8E+00	1.9E-01
PM	Ib/FU	6.0E+00	6.0E+00	0.0E+00
Hydrocarbons	Ib/FU	3.1E+00	2.8E+00	3.1E-01
CO	Ib/FU	8.3E-01	7.6E-01	7.0E-02
Chlorine	Ib/FU	5.9E-01	5.9E-01	0.0E+00
MIAK	Ib/FU	5.2E-01	7.1E-02	4.5E-01
PM10	Ib/FU	3.1E-01	3.1E-01	0.0E+00
Benzene	Ib/FU	2.7E-01	2.7E-01	0.0E+00
Methane	Ib/FU	2.6E-01	2.3E-01	2.6E-02
Heavy Aromatics Toluene	Ib/FU Ib/FU	2.0E-01 1.9E-01	2.0E-01 1.9E-01	0.0E+00 1.4E-03
Heptane	lb/FU	8.1E-02	7.3E-02	8.0E-03
Propane	ib/FU	7.0E-02	6.3E-02	6.9E-03
Naphtha	ib/FU	6.6E-02	0.0E+00	6.6E-02
Hexane	Ib/FU	6.3E-02	5.7E-02	6.2E-03
Aromatic hydrocarbons	Ib/FU	6.1E-02	0.0E+00	6.1E-02
n-Butane	Ib/FU	5.6E-02	5.0E-02	5.5E-03
Octane	Ib/FU	5.4E-02	4.9E-02	5.3E-03
Xylene	lb/FU	4.7E-02	8.9E-03	3.8E-02
Ethane	Ib/FU	4.5E-02	4.0E-02	4.4E-03

Table 6-6. Alternative Primer and Thinner CARC System Life Cycle Inventory Summary Results (cont.)

(oont.)		Baseline CARC System	CARC System Materials Manufacture	CARC System Use/Reuse Maintenance
LCI Components	Units	Quantity	Quantity	Quantity
Functional Unit (FU)	ft^2	1,000		
Dubé alashal	15. 15 ⁻¹ 1. 1	4.25.00	0.05.00	4.05.00
Butyl alcohol Pentane	ib/FU Ib/FU	4.2E-02 3.9E-02	0.0E+00 3.5E-02	4.2E-02 3.9E-03
Butyl acetate	Ib/FU	3.9E-02 2.4E-02	0.0E+00	3.9E-03 2.4E-02
Organic Acids	ib/FU	2.3E-02	2.1E-02	2.4E-02 2.3E-03
Cumene	Ib/FU	2.3E-02	2.3E-02	0.0E+00
Phenol	Ib/FU	2.1E-02	2.1E-02	0.0E+00
Formaldehyde	Ib/FU	2.0E-02	1.8E-02	1.9E-03
Aldehydes	lb/FU	1.8E-02	1.6E-02	1.8E-03
C-7 cycloparaffins	Ib/FU	1.1E-02	1.0E-02	1.1E-03
Acetone	ib/FU	7.9E-03	7.1E-03	7.7E-04
HCN	Ib/FU	6.8E-03	6.8E-03	0.0E+00
Acetaldehyde	Ib/FU	6.2E-03	6.2E-03	0.0E+00
Hexyl acetate	lb/FU	5.5E-03	0.0E+00	5.5E-03
MEK	lb/FU	4.5E-03	7.8E-04	3.7E-03
C-8 cycloparaffins	lb/FU	4.2E-03	3.8E-03	4.1E-04
Nitroethane	lb/FU	3.9E-03	0.0E+00	3.9E-03
Iso-Butane	Ib/FU	2.8E-03	2.5E-03	2.7E-04
Hydrochloric acid	Ib/FU	1.9E-03	1.9E-03	0.0E+00
Ethylbenzene	Ib/FU	1.8E-03	1.8E-03	0.0E+00
Propylene	Ib/FU	1.1E-03	1.1E-03	0.0E+00
Dichlorodifluoromethane	Ib/FU	1.1E-03	1.1E-03	0.0E+00
Ammonia	Ib/FU Ib/FU	8.9E-04 6.4E-04	8.9E-04 6.4E-04	0.0E+00
Naphthalene 2-nitropropane	lb/FU	6.1E-04	6.1E-04	0.0E+00 0.0E+00
Ethylene	lb/FU	2.9E-04	2.9E-04	0.0E+00
Sulfuric acid	lb/FU	8.3E-05	8.3E-05	0.0E+00
Acetonitrile	lb/FU	2.4E-05	2.4E-05	0.0E+00
Methanol	Ib/FU	1.9E-05	1.9E-05	0.0E+00
Bromotrifluoromethane	Ib/FU	8.3E-06	8.3E-06	0.0E+00
Nitric acid	Ib/FU	5.5E-06	5.5E-06	0.0E+00
Bromochlorodifluoromethane	Ib/FU	2.2E-06	2.2E-06	0.0E+00
1,2-butylene	Ib/FU	7.0E-07	7.0E-07	0.0E+00
Kerosene	Ib/FU	4.1E-09	3.9E-09	0.0E+00
Lead	Ib/FU	9.2E-11	8.8E-11	0.0E+00
Ethyl chloride	Ib/FU Ib/FU	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00
Vinyl chloride Fluorine	lb/FU	0.0E+00	0.0E+00	0.0E+00
MPK	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Propyl acetate	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Isopropyl alcohol	lb/FU	0.0E+00	0.0E+00	0.0E+00
MIBK	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Isobutyraldehyde	lb/FU	0.0E+00	0.0E+00	0.0E+00
Trichloroethane	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Carbon tetrachloride	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Chloroform	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Butyl cellosolve	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Ethylene dichloride	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Aliphatic hydrocarbons	Ib/FU	0.0E+00	0.0E+00	0.0E+00
Wastewater Emissions				
Wastewater	њ/FU	3.0E+03	3.0E+03	0.0E+00
WW Reini'd	Ib/FU	1.5E+02	1.4E+02	1.5E+01
WW Discharg.	Ib/FU	6.7E+01	6.1E+01	6.6E+00
Mobile ions	Ib/FU	3.3E+01	3.0E+01	3.2E+00
WW Injected	Ib/FU	2.2E+01	2.0E+01	2.2E+00
Sodium	lb/FU	1.4E+01	1.2E+01	1.3E+00
Chloride	Ib/FU	1.1E+01	9.7E+00	1.1E+00
Oil and Grease	ib/FU	3.3E-01	3.0E-01	3.3E-02
Titanium dioxide	Ib/FU	2.1E-01	2.1E-01	0.0E+00
Chlorine	ib/FU	1.2E-01	1.2E-01	0.0E+00
Boron	Ib/FU	1.4E-02	1.3E-02	1,4E-03
Cadmium	Ib/FU	8.0E-03	8.0E-03	0.0E+00
Lead	Ib/FU	2.9E-03	2.9E-03	0.0E+00
Aluminum	Ib/FU	9.7E-04	9.7E-04	0.0E+00

Table 6-6. Alternative Primer and Thinner CARC System Life Cycle Inventory Summary Results (cont.)

		Baseline CARC System	CARĈ System Materials Manufacture	CARC System Use/Reuse Maintenance
LCI Components Functional Unit (FU)	Units ft^2	Quantity 1,000	Quantity	Quantity
Tandional Office (1 O)		1,555		
Chromium	lb/F∪	8.9E-04	8.9E-04	0.0E+00
Benzene	Ib/FU	6.7E-04	6.1E-04	0.0E+00
Vanadium	Ib/FU	2.1E-04	2.1E-04	0.0E+00
Copper	lb/FU	6.8E-05	6.8E-05	0.0E+00
Zinc	Ib/FU	6.8E-05	6.8E-05	0.0E+00
Arsenic	Ib/FU	2.8E-05	2.5E-05	0.0E+00
Iron	Ib/FU	7.5E-06	7.2E-06	0.0E+00
Mercury	Ib/FU	6.1E-06	5.6E-06	0.0E+00
Thallium	Ib/FU	4.9E-06	4.4E-06	0.0E+00
Ammonia	lb/FU	1.7E-06	1.7E-06	0.0E+00
Dissolved Solids	Ib/FU	6.3E-07	6.1E-07	0.0E+00
Magnesium	Ib/FU	1.9E-07	1.9E-07	0.0E+00
Hydrogen cyanide	Ib/FU	1.2E-07	1.2E-07	0.0E+00
Sulfuric Acid	Ib/FU	8.7E-08	8.4E-08	0.0E+00
COD	Ib/FU	4.2E-09	4.0E-09	0.0E+00
Suspended Solids	Ib/FU	2.2E-09	2.1E-09	0.0E+00
BOD	Ib/FU	1.3E-09	1.2E-09	0.0E+00
Oil	Ib/FU	7.0E-10	6.7E-10	0.0E+00
Acid	Ib/FU	7.0E-10	6.7E-10	0.0E+00
Metals	Ib/FU	3.5E-10	3.4E-10	0.0E+00
Sulfide	Ib/FU	3.5E-10	3.4E-10	0.0E+00
Phenol	lb/FU	3.5E-10	3.4E-10	0.0E+00
Solid Wastes				
Hazardous Wastes	lb/FU	7.9E+01	9.8E-01	7.8E+01
Solid Wastes	lb/FU	6.2E+01	6.2E+01	0.0E+00
Acetaldehyde	Ib/FU	1.0E-02	1.0E-02	0.0E+00
Methanol	lb/FU	9.2E-03	9.2E-03	0.0E+00
2-nitropropane	lb/FU	8.1E-03	8.1E-03	0.0E+00
Acetone	Ib/FU	5.6E-03	5.6E-03	0.0E+00
Acetonitrile	lb/FU	4.6E-03	4.6E-03	0.0E+00
Nitric acid	lb/FU	6.4E-04	6.4E-04	0.0E+00
Ammonia	Ib/FU	1.4E-04	1.4E-04	0.0E+00
Formaldehyde	Ib/FU	8.0E-05	8.0E-05	0.0E+00
Naphathalene	Ib/FU	6.6E-06	6.6E-06	0.0E+00
Hydrogen cyanide	Ib/FU	6.6E-06	6.6E-06	0.0E+00
U238	Ib/FU	4.8E-09	4.8E-09	0.0E+00
Fly Ash	Ib/FU	1.8E-09	1.8E-09	0.0E+00
FGD Solids	Ib/FU	7.0E-10	7.0E-10	0.0E+00
Bottom Ash	Ib/FU	5.1E-10	5.1E-10	0.0E+00
Slag	lb/FU	1.9E-10	1.9E-10	0.0E+00
U235	Ib/FU	4.0E-11	4.0E-11	0.0E+00
Pu (fissile)	Ib/FU	3.3E-11	3.3E-11	0.0E+00
Fission Products	Ib/FU	2.3E-11	2.3E-11	0.0E+00
Pu (nonfissile)	₩FU	1.3E-11	1.3E-11	0.0E+00
1/236	lb/FU	3.2E-12	3.2E-12	0.0E±00

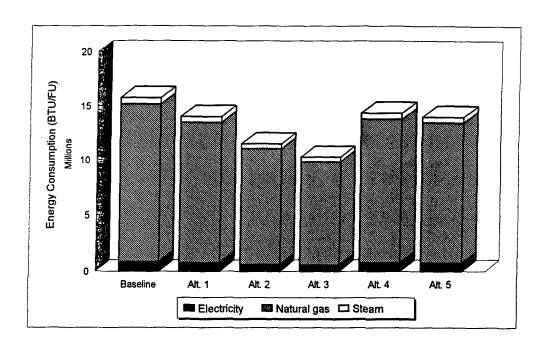


Figure 6-1. Energy consumption by type.

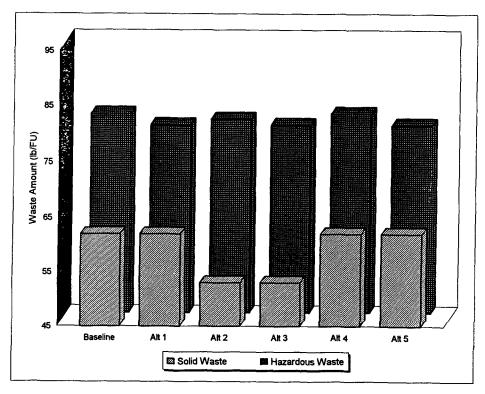


Figure 6-2. Solid/hazardous waste.

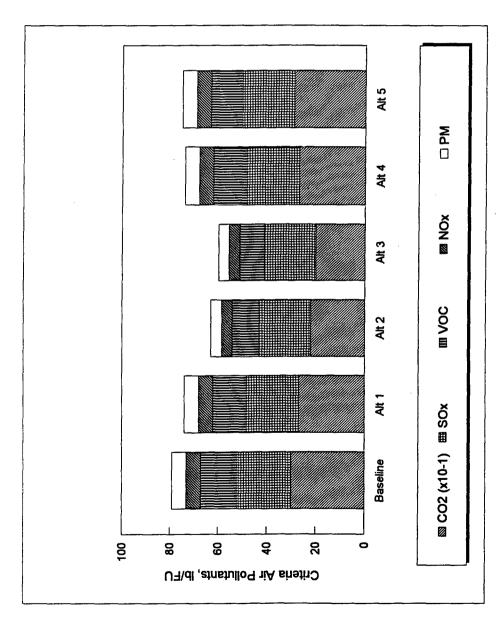


Figure 6-3. Criteria air pollutants

Table 6-7. Comparison of Normalized, Factored Environmental Impact Scores for the Baseline and Alternative CARC Systems

	=1	IMPACT SCORES	CORES FOR CARC SYSTEMS (best scores for each impact category in bold)	EMS (best scores	for each impact c	ategory in bold)	
Spatial			ALTERNATIVE	ALTERNATIVE	ALTERNATIVE PRIMER &	ALTERNATIVE	ALTERNATIVE PRIMER &
ocale	Impact Categories	BASELINE	PRIMER	GUN	GUN	THINNER	THINNER
GLOBAL	***************************************	***************************************	Andread and the specific and property of the specific place of the specific and the specifi				
	ODP	1.090	0.367	0.799	0.265	1 106	1960
	GLBLWRM	1.013	0.927	0.739	0.677	0000	0.307
	FSLFUELS	1.263	1121	0 0 0	1000	0.00	0.984
REGIONAL		***************************************		676.0	770'0	1.133	1.180
	ACIDDEP	1.198	1.173	1.116	1.098	1 187	4 4 7 5
	SMOG	1.114	0.993	0.800	0.721	1 035	1.1/3
	WTRUSE	The second secon	AND THE PERSON NAMED AND PASSED A			20.5	0.992
LOCAL	MANAGEMENT CONTROL OF THE PROPERTY OF THE PROP	and delication and a second se		er referencies de la companyación d			***************************************
	TOXICITY	***************************************					
	HOMAN	2.150	1.612	1.510	1.172	1 000	1 703
	ENVTERR	3.799	2.635	2.565	1906	2000	7 862
	ENVAQ	1.280	3.537	0.929	2 554	4 270	2007
	LANDUSE	1.577	1585	1 102	4 407	6/7-1	5.540
1	The normalized factored parents for in-		200:	2011	/64.1	1.5//	1.585
equival	equivalency factor.		category equals the sum for each chemical of the product of inventory quantity times	r each chemical of t	the product of inver	ntory quantity times	

ACIDDEP = Acid Deposition Potential, SMOG = Smog Creation Potential, WTRUSE = Water Use, HUMAN = Human Health Toxicity Potential, ENVTERR = Terrestrial Wildlife Toxicity Potential, ENVAQ = Aquatic Biota Toxicity Potential, LANDUSE = Land Use ODP = Ozone Depletion Potential, GLBLWRM = Global Warming Potential, FSLFUELS = Fossil Fuel & Mineral Depletion Potential for Waste Disposal equivalency factor.

The scores for all three of the global scale impact categories were lowest in the option involving the alternative primer and spray gun. The normalized, factored, impact scores for ozone depletion potential suggest that this impact category is reduced by using the alternative primer and spray gun, which is the result of a reduction in the emission of carbon tetrachloride and trichloroethane during manufacture of ingredients for the alternative versus baseline primers. However, the ozone depletion impact from the baseline primer is expected to be eliminated in the near future as the manufacturer eliminates trichloroethane, which is used during manufacture. The normalized, factored, impact scores for global warming potential suggest that this impact category is reduced by using the alternative primer and spray gun, which is the result of a reduction in the emission of carbon tetrachloride, CO₂, and trichloroethane during manufacture of ingredients for the alternative versus baseline primer. There is also a reduction in the normalized, factored, impact score for natural resource use (e.g. fossil fuels, phosphate rock, and zinc) with use of the alternative primer and spray gun, associated with the decreased manufacture of intermediate materials.

The scores for the two relevant regional scale impact categories were lowest in the option involving the alternative primer and spray gun. There is a decrease in the normalized, factored, impact score for acid deposition potential with use of the alternative primer & gun, mainly due to a decrease in all acid deposition precursor emissions, resulting from decreased use rates of topcoat, primer, and thinner. There is also a decrease in the smog creation potential score with the use of the alternative primer and spray gun, mainly due to a decrease in release of total VOC emissions (chemical species not available) during manufacture of ingredients for the alternative versus baseline primer, as well as decreased use rates of topcoat, primer, and thinner associated with use of the alternative spray gun.

Of the three toxicity impact categories considered, human health and terrestrial wildlife toxicity impact potentials showed the greatest reduction for the option involving the alternative primer and spray gun. Aquatic biota toxicity, however, was lowest with the option involving the baseline primer and alternative spray gun. There is a decrease in the normalized, factored, impact score for human toxicity potential associated with the manufacture of intermediate materials for the alternative versus baseline primer, which is the result of a reduction in the emission of several toxic materials (e.g., acetaldehyde, n-butane, n-butyl acetate, chlorine, CO, ethylene dichloride, fluorine, isobutyraldehyde, MIAK, MIBK, and n-pentane) during manufacture of ingredients for the alternative primer or during drying of the primer after application. There is a decrease in the normalized, factored, impact score for terrestrial wildlife toxicity potential associated with the manufacture of intermediate materials for the alternative versus baseline primer, which is the result of a reduction in the emission of several toxic materials (e.g., n-heptane, isobutyraldehyde, and MIAK) during manufacture of ingredients for the alternative primer or during drying of the primer after application. Use of the alternative primer, even with the alternative gun, is worse than the baseline in the aquatic toxicity impact area. This is due to the increase in cadmium and chlorine in the wastewater associated with manufacture of the ingredients for the alternative primer. However, use of the alternative gun with the baseline primer gives the lowest potential impact score for aquatic biota.

The local scale impact of land use resulting from waste disposal shows the greatest reduction in potential impact score for two alternatives: the alternative gun and the alternative gun with alternative primer. This is associated with a reduction in the quantity of hazardous and nonhazardous waste from manufacturing of different ingredients for the alternative primer and from decreased use rates of topcoat, primer, and thinner resulting from use of the alternative spray gun.

6.2.2 Sensitivity Analysis

One of the considerations in conducting an LCA is the integration of the understanding of the uncertainties in the information with the results. In this case the uncertainties in the inventory data were overlaid with the possible uncertainties introduced in the impact assessment. To assess the

possible consequences, if any, on the results of having missing or incorrect equivalency factors, a sensitivity analysis was performed. In this analysis, the details of which are provided in Appendix E, two value substitutions were made for the equivalency factors. One situation occurred where the baseline CARC system contained a specific chemical species, for example toluene, and the alternative formulation simply identified a chemical category, for example aromatic hydrocarbons. To test the effect of this on the impact scores, a worst case scenario consisting of selecting the most adverse equivalency factor appropriate to the impact category (ozone depletion, global warming, toxicity, etc.) was chosen and the modeling calculations repeated. The resulting values were then compared to the "expected" value and a percentage difference computed. Although large differences in any one environmental category could occur if this scenario were true, the overall environmental impact scores varied by an average of 5.4% with a range from 3.2% for Alternative 4 (alternative thinner) to 8.6% for Alternative 5 (alternative thinner and primer). Thus, the analyzed results are considered to be acceptable to within about 5 to 6% when the effect of factor specificity is concerned.

A second type of uncertainty arises if an equivalency factor is known for one component of the baseline system and completely unknown for a substitute. In this case the alternative could be favored simply because more adverse impacts were loading onto the baseline system. This situation did not occur for any constuents considered to contribute in significant mass quantities to the overall impact, but should be kept in mind in applying the valuation procedure in general.

A third type of uncertainty exists that was not evaluated directly. This uncertainty pertains to the variability in the equivalency factor themselves. For example, the basis for global warming equivalencies is the modeling of climatological effects of insertion of a known amount of a global warming gas into the atmosphere. The impact potential is followed by tracking its chemistry through time and integrating the incremental effect over periods of 20 to 500 years. Uncertainty exists in the models and the understanding of the basic chemistry. The overall magnitude of the uncertainties have been estimated by the international or regional bodies responsible for creating the equivalency factors. In a comparative analysis of this type the uncertainties would be expected to affect both the baseline and alternatives.

6.3 Economic Assessment

The estimated costs for CARC depainting and painting are summarized in Table 6-8. Fort Eustis costs are represented by the baseline cost. Costs for five alternative systems are also presented.

6.3.1 Fixed Capital Investment

The estimated baseline FCI, \$516,000, was based on operations at Fort Eustis. A breakdown of the estimated FCI costs for CARC depainting and painting is shown in Table 6-9. Fort Eustis costs are represented by the baseline cost. Costs for five alternative systems are also presented.

Table 6-8. Estimated FCI, Annual Operating Cost, and Anualized Costs

	Baseline	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5
Fixed Capital Investment (FCI), \$1000	516	516	548	548	516	516
Annual operating cost						
\$1000/yr	1,797	1,788	1,574	1,565	1,797	1,787
\$/1000 ft ²	2,903	2,888	2,542	2,928	2,901	2,885
Annualized cost						
\$1000/yr	1,845	1,837	1,625	1,616	1,845	1,835
\$/1000 ft ²	2,981	2,966	2,625	2,611	2,979	2,963

6.3.2 Annual Operating Cost

The estimated annual baseline operating cost, based on operations typical of Fort Eustis, is \$1,797,000/yr. Details for the basecase and the five alternative systems are shown in Table 6-10.

6.3.3 Annualized Cost

The estimated baseline annualized cost, \$1,797,000/yr, is the sum of the annual operating cost and amortization at Ft. Eustis. Annualized cost for the baseline case and five alternative systems are summarized in Table 6-11.

Table 6-9. Estimated Baseline Fixed Capital Investment

Cost Item	Baseline	Alt. 2	Alt. 2	Alt. 3	Alt. 4	Alt. 5	Basis ^(a)
Purchased equipment	120,500	120,500	130,000	130,000	120,500	120,500	100% of PE
PE installation	54,225	54,225	58,500	58,500	54,225	54,225	45% of PE cost
Instrument and control	10,845	10,845	11,700	11,700	10,845	10,845	9% of PE cost
Piping	19,280	19,280	20,800	20,800	19,280	19,280	15% of PE cost
Electrical	12,050	12,050	13,000	13,000	12,050	12,050	10% of PE cost
Building	102,000	102,000	102,000	102,000	102,000	102,000	\$43 per sq ft
Yard improvement	15,665	15,665	16,900	16,900	15,665	15,665	13% of PE cost
Service facilities	48,200	48,200	52,000	52,000	48,200	48,200	40% of PE cost
Land	0	0	0	0	0	0	
Total Direct Plant Cost	382,765	382,765	404,900	404,900	382,765	382,765	
Engineering and	39,765	39,765	42,900	42,900	39,765	39,765	33% of PE cost
Construction expense	46,995	46,995	50,700	50,700	46,995	46,995	39% of PE cost
Total Direct and Indirect	469,525	469,525	498,500	498,500	469,525	469,525	
Contractors fees	23,476	23,476	24,925	24,925	23,476	23,476	5% of direct
Contingency	23,476	23,476	24,925	24,925	23,476	23,476	5% of direct
Fixed Capital	516,478	516,478	548,350	548,350	516,478	516,478	

⁽a) Peters and Timmerhaus, 1991

Table 6-10. Estimated Annual Operating Cost

Cost Item	Baseline	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5	Basis
Raw Materials							
Basecase topcoat	111,456	111,456	81,586	81,586	111,456	111,456	\$36/gal ⁽⁺⁾
Basecase primer	26,316	0.00	26,316	0.00	26,316	0.00	\$17/gal ^(s)
Alternative primer	0.00	22,727	0.00	22,727	0.00	22,727	\$20.33/gal ^(e)
Basecase thinner	15,093	15,093	15,093	15,093	0.00	0.00	\$15/gal ^(*)
Alternative thinner	0.00	0.00	0.00	0.00	15,093	15,093	\$15/gal ^(*)
Depainting grit	7,992	7,992	7,992	7,992	7,992	7,992	\$0.25/lb ^(a)
Utility							
Electricity	1,053	1,053	1,053	807	807	1,053	\$0.06/kWhr
Labor							
Operating	683,700	682,410	597,700	596,410	683,700	682,410	\$25/hr ^(b)
Maintenance	15,493	15,493	16,451	16,451	15,493	15,493	3% of FCI ^(c)
Supervision	102,555	102,363	89,655	89,462	102,555	102,362	15% of operating labor ^(c)
Operating Supplies	102,555	102,363	89,655	89,462	102,555	102,362	15% of operating labor ^(c)
Maintenance Supplies	20,657	20,657	20,657	20,657	20,657	20,657	4% of FCI ^(c)
Laboratory Charges	102,555	102,362	89,655	89,462	102,555	102,362	15% of operating labor ^(c)
Plant Overhead	481,049	480,159	422,283	421,393	481,049	480,159	60% of operating/maintenance

Table 6-10. Estimated Annual Operating Costs (continued)

Cost Item	Baseline	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5	Basis
Waste Disposal							
Topcoat applied with HVLP gun	3,095	3,095			3,095	3,095	\$10/gal ^(b)
Topcoat applied with improved gun			2,064	2,064			
BP primer	1,829		1,829		1,829		\$10/gal ^(b)
AP primer		1,829		1,829			
Painting materials	4,924	4,924	3,893	3,893	4,924	3,095	100% of paint/primer disposal costs ^(b)
Abrasive	42,904	42,904	42,904	42,904	42,904	42,904	\$0.58/lb ^(a)
Insurance	5,165	5,165	5,484	5,484	5,165	5,165	1% of FC ^(c) I
Regulatory Compliance	68,370	68,241	59,770	59,641	68,370	68,241	10% of operating labor ^(c)
Total Annual Operating Costs	1,796,760	1,788,453	1,574,039	1,565,488	1,796,516	1,786,624	
per painted area	2,703	2,888	2,542	2,928	2,901	2,885	per 1,000 ft ²
Capital amortization	48,369	48,369	51,358	51,358	48,369	48,369	9.37% FCI (11 yrs service @ 6%)
per painted area	78	78	83	83	78	78	per 1,000 ft ²
Total cost	1,845,129	1,836,822	1,625,397	1,616,846	1,844,855	1,834,993	
per painted area	2,981	2,966	2,625	2,611	2,979	2,963	per 1,000 ft ²

⁽a) See Table 6 for basis references.

⁽b) Assumed based on standard values/practices.(c) Peters and Timmerhaus, 1991.

Table 6-11. Annualized Cost

Cost Element	Baseline	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5
Annual operating cost: \$1000/yr \$/1000 ft ²	1,797 2,903	1,788 2,888	1,974 2,542	1,565 2,928	1,797 2,901	1,787 2,885
Amortization: \$1000/yr \$/1000 ft ²	48 78	48 78	51 83	51 83	48 78	48 78
Annualized cost: \$1000/yr \$/1000 ft ²	1,845 2,981	1,837 2,966	1,625 2,025	1,616 2,611	1,845 2,979	1,835 2,963

6.4 Performance Evaluation

Descriptions of the scoring ranks for each of the performance evaluation parameters were provided in Section 4.

6.4.1 Application Equipment

The Can-am system was reviewed independently and was found to provide a transfer efficiency of 90%, while maintaining acceptable surface quality. This is an increase in transfer efficiency of approximately 38%. The surface characteristics of the topcoat were found to be acceptable. It is being or has been used at several bases including Tobyhanna. Training for use of the alternative is believed to be minimal (< one day per man). However, due to some equipment failures at Tobyhanna they have not been able to completely rely on this system. There is insufficient supplemental information to determine if equipment failure is a point of major consideration.

The substantial improvement in transfer efficiency without noticeable loss in surface quality make the turbine HVLP system, or similar increased efficiency systems, appropriate for recommendation based on performance.

Surface Quality

Baseline

Acceptable (Martin, 1995; Miller, 1995; Hughes Aircraft Company, 1991 as reported

in Cavendar et al., 1994)

Rating: 2

Alternative

Acceptable (Tierney, 1995; Hughes Aircraft Company, 1991 as reported in Cavendar

et al., 1994)

Rating: 2

Transfer Efficiency (TE)

Baseline

T.E = 65% (Martin, 1995; Miller, 1995; Hughes Aircraft Company, 1991 as reported

in Cavendar et al., 1994)

Rating: 2

Alternative

T.E. = 90% (Tierney, 1995; Hughes Aircraft Company, 1991 as reported in

Cavendar et al., 1994, Bunnell, 1995)

Rating: 4

Ranking Delta

Surface Quality: 0 weight = 2 Transfer Efficiency: 2 weight = 1

Total after weighting: (2*0+1*2)/3 = +2/3

6.4.2 Primers

The performance of the two primers (Baseline MIL-P-53022, Niles; Alternative MIL-P-53030, Deft) was viewed differently by different sources. Some users (Miller, 1995) expressed concern about adhesion between the primer and the topcoat, while others were not aware of this as a significant concern (Ewalt, 1995). It is not clear as to why there were occasional primer-topcoat adhesion problems. However, it is likely that different environmental conditions had some impact. Most paints, including primers, react differently to varying environmental conditions. One primer might perform better than a second primer when applied in a cool dry environment, but fail dramatically when applied under hot, humid conditions. Efforts to contact additional users (Ft. Hood: Chief Warrant Officer Ferrell, Sgt. Abrahamson and others) of both primers were unsuccessful due to their commitments. Further collection of opinions may have provided useful information, but could not be accomplished at this time.

Using the water thinnable alternative may require some minimal changes in application procedures, such as longer wait times between coats. This is needed because water used to thin the primer must evaporate before the topcoat is applied. Presence of water in the primer could cause premature curing of the topcoat and an inferior bond. Also, since the alternative primer is moisture thinnable, it is likely that under humid conditions it would absorb environmental moisture which would extend the wait time before the topcoat could be applied.

To appropriately analyze the effectiveness of the baseline and the alternative primer, a blind side-by-side comparison on similar targets under a range of temperature and humidity conditions should be made. Small test panels could be painted with both of the primers and a topcoat. The manufacturers' application recommendations should be strictly followed. If the adhesion between the two primers does not vary, then the improved ease of cleanup using water does make the alternative primer appropriate for recommendation based upon performance factors.

Effect of Temperature and Humidity

Baseline

Rating: 3, minimal impact not seen as having practical significance (Miller, 1995;

Duncan, 1995)

Alternative

Rating: 2.5, a range of opinions describe the level of impact as a 2 and a 3

depending on the source (Miller, 1995; Duncan, 1995, Ewalt, 1995)

Cure Rate

Baseline

Rating: 3, cure rate had minimal effect on the painting schedule (Hale, 1995;

Miller, 1995)

Alternative

Rating: 3, cure rate had minimal effect on the painting schedule (Miller, 1995;

Duncan, 1995; Ewalt, 1995)

Surface Pretreatment Requirements

Baseline Rating: 2, minimal cleaning with solvent rag required (Hale, 1995; Miller, 1995)

Alternative Rating: 2, minimal cleaning with solvent rag required (Miller, 1995; Duncan, 1995;

Ewalt, 1995)

Ease of Primer Cleanup

Baseline Rating: 2, moderate effort required for cleanup (Hale, 1995; Miller, 1995)

Alternative Rating: 3, minimal effort required for cleanup (Miller, 1995, Duncan, 1995, Ewalt,

1995)

Ranking Delta

Effect of Temperature and Humidity: weight = 3
Cure Rate: weight = 1

Surface Pretreatment Requirements: weight = 1Ease of Primer Cleanup: weight = 1

Total after weighting: (3*(-0.5) + 1*0 + 1*0 + 1*0)/6 = -0.25.

6.4.3 Thinners

The performance of the two thinners (Baseline: Mil-T-81772B; Alternative: Federal Standard A-A-857B) varied from user to user. The effects of environmental differences are again believed to be the reason for differences in performance opinions. Differences in the ability to thin the topcoat were not discernable. However, the effect on the surface characteristics of the topcoat was noticeable. The effect of the thinner on the appearance and performance of the topcoat needs to be evaluated by each base to determine the impact on the topcoat for their specific conditions. The amount of thinner required is not expected to be affected dramatically by the selection of either of the two thinners.

Even if the alternative thinner is found to be unacceptable for use with the topcoat it should be considered for use in cleaning of the guns and hoses. Since, the thinning effectiveness of the two thinners is similar, the alternative can be recommended for use as a cleaning solvent at a minimum based on performance. The use of the thinner in conjunction with the topcoat needs to be determined on a base by base comparison.

Thinning Ratio or Thinner Effectiveness

Baseline 4:1 ratio for CARC: Thinner (Woody, 1995; Miller, 1995)

Rating: 2

Alternative 4:1 ratio for CARC: Thinner (Woody, 1995; Miller, 1995)

Rating: 2

Film Characteristics

Rating: 3, minimal blemishes not believed significant (Woody, 1995; Miller, 1995)

Rating: 2.5, a range of opinions make describe the level of impact as a 2 and a 3

depending on the source (Woody, 1995; Miller, 1995)

Ranking Delta

Effectiveness: weight = 1 Film Characteristics: weight = 1

Total after weighting: (1*0+1*(-0.5))/2 = -0.25.

6.5 Valuation Process

The valuation process was conducted in a step-wise fashion, beginning with the construction of the hierarchy tree and continuing with the environmental, cost, and performance weighting, respectively. The "final" decision hierarchy is shown in Figure 6-4. The term "final" in quotes is used to ensure that the reader understands that the structure of the hierarchy is determined by the analyst and the technical team. There is no single correct hierarchy, only decision structures that appear to make sense in analyzing the weights to be assigned. Each of the three major decision dimensions, environment, cost, and performance, are shown at the topmost level of the hierarchy. In turn these are further divided according to criteria and subcriteria within each of the areas. The environmental criteria are first grouped by spatial/temporal scales into global (long term), regional (intermediate term), and local (short to intermediate) term issues.

This arrangement provides a useful framework for consideration of elements that would be important at the facility versus larger, national to societal levels. Within the global, regional and local criteria, further subdivision is made to facilitate assigning preferences in an intuitive manner. Within the cost dimension, only two criteria were identified, corresponding to the variable (O&M) versus fixed (capitalized) cost categories. Further breakdown within each of these criteria was not felt to offer additional potential for assignment of the weights. Finally, the performance dimension criteria were divided according to the application equipment, primer, or thinner component and then further into specific performance subcriteria relevant to each component.

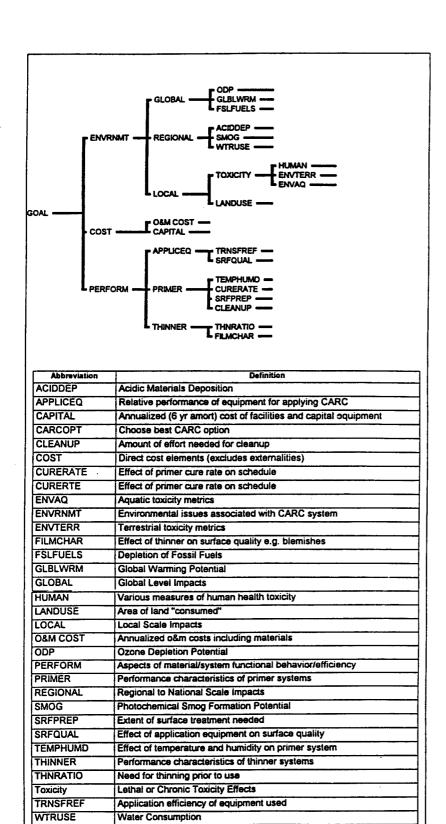


Figure 6-4. Structure of the analytic hierarchy for CARC alternatives.

The results of the weighting exercise assigned 65% of the value to the environmental dimension, 24% to the performance aspects, and 11% to the cost (Figure 6-5). This result should be viewed in the light of the scoping process where the threshold criteria were anticipated to result in alternatives that performed adequately and did not differ markedly in cost. Further tracing the weighting process into the three major branches indicates that global environmental issues were assigned approximately 32% of weight, or about half of the overall environmental contribution. Regional and local issues received 20% and 13%, respectively. In the cost branch, the O&M costs were considered approximately 3 times as important as the capital costs. Again, it should be borne in mind that the scoping exercise almost guaranteed that none of the alternatives would require and major capital expenditure. Finally, in the performance branch the primer was considered the most important with the thinner and gun receiving about equal consideration.

In each case the procedure for applying the valuation process to the impact assessment results was to create a "ruler" by normalizing the baseline impact scores to the highest value in each category. Then, the values for an alternative could be measured relative to that score. This produces a set of values that is internally consistent to the decision being made, but neither guarantees the metric is theoretically as robust as possible (i.e., its ability to differentiate alternatives in principle could be greater) nor allows decisions made in one setting to be compared to those made in another. As an example, recommendations made regarding CARC alternatives in this effort would not be comparable to those made about procuring plating equipment if that decision was made using a set of normalizing factors derived as part of that decision process.

6.6 Overall Improvement Assessment Results

The application of the valuation weights to the normalized impact scores is summarized in Tables 6-12 through 6-17 for the baseline and each of the alternatives. The score summaries (lower is preferable) are shown below in decreasing order:

Baseline: 1.191
Alternative Thinner: 1.134 (Alternative 4)
Alternative Primer: 1.019 (Alternative 1)
Alternative Thinner and Primer: 1.016 (Alternative 5)
Alternative Gun: 1.006 (Alternative 2)
Alternative Primer and Gun: 0.898 (Alternative 3).

These results indicate that the use of the alternative gun makes the largest potential improvement for an alternative that changes only a single factor, and combining this with the alternative primer results in the best CARC option. Therefore, it is recommended that the next phase of the effort include the demonstration of the alternative primer and gun combination. Also, a further scenario consisting of the alternative thinner, primer, and gun should be analyzed to assess whether this combination may be even better than the primer/gun combination.

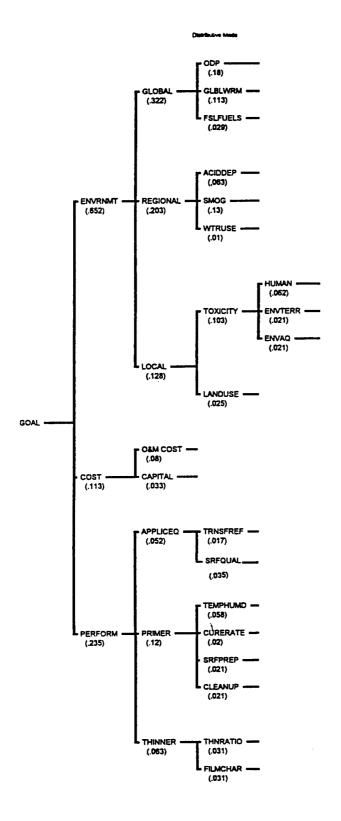


Figure 6-5. Overall weights derived for the valuation of CARC alternatives

Table 6-12. Life Cycle Impact Valuation Calculations for Baseline

Baseline	Score	1.191	and the same of th																												
Weighted Normalized	Factored Score		0.347	0.196	0.115	0.036	₹0.220	0.075	0.145	0.000	0.276	0.237	32	78	26	0.040	0.113	0.080	0.033	0.235	€0.052	_	35	0.120	58	120	21	21	0.063	_	31
Normalized Factored	Score			1.090	1.013	1.263		1.198	1.114				2.150 (0.132	3.799 0.078		1.577		1.000	1.000			1.000	1.000 0.035	ال			1.000 0.021				1.000 0.031
_ 5	Factor			0.17983	0.11328	0.02855		0.06253	0.13007	0.01002					0.02052	0.02507		0.08027	0.03274				0.03522				0.02072				R 0.03144
	Ssues>		٠	ODP	GLBLWRM	FSLFUELS		ACIDDEP	SMOG	WTRUSE		TOXICITY	HOMAN	ENVTERR	1	LANDUSE		O&M COST	CAPITAL		APPLICEQ	TRNSFRE	SRFQUAL	PRIMER	TEMPHUM	CURERAT	SRFPREP	CLEANUP	THINNER	THNRATIO	FILMCHAR
•	Scale	CARCOPT	GLOBAL				REGIONAL				LOCAL						LSOO			PERFORM											

Table 6-13. Life Cycle Impact Valuation Calculations for Alternative Primer

Alternative No. 1 Score	1.019															4			The state of the s							**************************************				
Weighted Normalized Factored Score		0.203	0.066	0.105	0.032	₹ 0.203	0.073	0.129	7	0.266	€ 0.226				0.040	0.113	0.080	0.033	0.236	0.052			0.120					* 0.063		
Weigh												0.099	0.054	0.073		40.00					0.017	0.035		0.049	0.020	0.021	0.031		0.031	0.031
Normalized Factored Score		The state of the s	0.367	0.927	1.121		1.173	0.993				1.612	2.635	3.537	1.585		0.995	1.000			1.000	1.000		0.833	1.000	1.000	1.500		1.000	1.000
AHP Weighting Factor		The state of the s	0.17983	0.11328	0.02855		0.06253	0.13007	0.01002			0.06155	0.02052	0.02052	0.02507		0.08027	0.03274			0.01713	0.03522		0.05841	0.02013	0.02072	0.02057		0.03144	0.03144
\		The second secon	ODP	GLBLWRM	FSLFUELS			SMOG	WTRUSE		TOXICITY	HOMAN	ENVTERR	ENVAQ	LANDUSE		O&M COST	CAPITAL	\	APPLICEQ	TRNSFRE	SRFQUAL	PRIMER	TEMPHUM	CURERAT	SRFPREP	CLEANUP	HINNER		FILMCHAR
<u>elena</u>	TOUCH			. Wilder and the commence of t	The same of the sa	REGIONAL		A VARIABLE MENTER AND THE PROPERTY OF THE PROP	CALLEGE CONTRACTOR CON	LOCAL	ment of the language and the granteness made in commences to the first a property for experiences	eringeline menten entre den den der 1981 militarie des proprietations des entre des en	me tompte man detectoris detectoris betreeten betreeten betreeten betreeten betreeten betreeten betreeten men	mirer il feriffik işteleri antinana parepiratini indeprimatini berinda seriente errente errente errente er	And the same of th	COST	and the state of t	(中央の) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	PERFORM		A THE REST OF THE PARTY OF THE					the state of the s		and the state of t		

Table 6-14. Life Cycle Impact Valuation Calculations for Alternative Gun

Table 6-15. Life Cycle Impact Valuation Calculations for Alternative Primer and Gun

Alternative No. 3	Score	0.838						and the state of t				- With the state of the state o	and the state of t			***************************************		And the contract of the contra				And the second s		· · · · · · · · · · · · · · · · · · ·						
Weighted Normalized	ractored Score	0410	0.148	0.077	0.024	₩ 0.162		0.094	0.000	0.201	€ 0.164	0.072	0.039	0.052	0.038	0.116		0.035	120271	0.088		0.070	₹ 0.120	(0.049)	0.020	0.021	0.031	0.063		0.031
Normalized Factored	B 1000	A COMPANY OF THE PROPERTY OF T	0.265	0.677	0.827		1.098	0.721	material control of the control of t		THE REAL PROPERTY OF THE PROPE	1.172	1.906	2.554	1.497		1.009	1.064			1.000	2.000		0.833	1.000	1.000	1.500		1.000	1.000
AHP Weighting	200	Alade to the contract of the second by a second contract of the seco	0.17983	0.11328	0.02855	Angele de la companya del la companya de la company	0.06253	0.13007	0.01002			0.06155	0.02052	0.02052	0.02507		0.08027	0.03274			0.01713	0.03522		0.05841	0.02013	0.02072	0.02057		0.03144	0.03144
\$ 100 months		A THE RESIDENCE AND THE RESIDENCE AND THE PROPERTY OF THE PROP	ODP	GLBLWRM	FSLFUELS		ACIDDEP	SMOG	WTRUSE		TOXICITY	HUMAN	ENVTERR	ENVAQ	LANDUSE		O&M COST			APPLICEQ	TRNSFRE	SRFQUAL	PRIMER	TEMPHUM	CURERAT	SRFPREP	CLEANUP	THINNER	THNRATIO	FILMCHAR
Scale	CARCOPT	GIOBAI		Andrew Community of the		REGIONAL	en e	COMPTRATE OF A COMPTRATE OF A PROPERTY OF A SECTION OF A COMPTRATE OF A COMPTRATE OF A COMPTRATE OF A SECTION OF A SECTIO		LOCAL		A				COST			PERFORM											

Table 6-16. Life Cycle Impact Valuation Calculations for Alternative Thinner

ssues>	>	AHP Weighting Factor	Normalized Factored Score	Weighted Normalized Factored Score	ormalized Score	Alternative No. 4 Score
						₹1.134
					0.334	
ODP		0.17983	1.106	0.199	66	
GLBLWRM	radica mari manda a sel man mari dimensa mangandidi mangan a sel mari a seperanta	0.11328	0.905	0.103	03	
FSLFUELS		0.02855	1.133	0.032	32	
REGIONAL	AND ADDRESS OF THE PARTY OF THE	manage at the community of the community			0.209	
ACIDDEP		0.06253	1.187	0.0	-	
SMOG	term verbord additional disease. Or county hardwide	0.13007	1.035	0.135	35	
WTRUSE		0.01002		0.0	000	
entremone commo entremone de commente entremone entremone de la commente del la commente de la commente del la commente de la					0.249	
TOXICITY				0.209		
HOMAN	AN	0.06155	1.997	1		
EN	ENVTERR	0.02052	2.918	0.060		
ENVAQ	AQ	0.02052	1.279	0.026		
LANDUSE		0.02507	1.577		0.040	
					0.113	
O&M COST		0.08027	0.999	0.0	0.080	
CAPITAL		0.03274	1.000	0.0	0.033	
PERFORM	A de la companya de l				0.230	
APPLICEQ	karrers Michigan www.tet dan kindlin dalli de il kindester ett til til til	Marie		0.052)52	
TRN	TRNSFRE	0.01713	1.000	0.017		
	SRFQUAL	0.03522	1.000	0.035		
PRIMER				1	- 0.120	
TEM	TEMPHUM	0.05841	1.000	0.058		
CUR	CURERAT	0.02013	1.000	0.020		
SRF	SRFPREP	0.02072	1.000	0.021		
	CLEANUP	0.02057	1.000	0.021		
THINNER					-0.058	
NHL	THNRATIO	0.03144	1.000	0.031		
FILN	FILMCHAR	0.03144	0.833	0.026		

Table 6-17. Life Cycle Impact Valuation Calculations for Alternative Primer and Thinner

Alternative No. 5 Score	1.016																								a control of the cont					
Weighted Normalized Factored Score		0.198	0.066	0.101	0.031	★ 0.202	0.073	0.129	0000	0.274	€ 0.234	0.105	0.057	0.073	0.040	0.113	0.080		0.230	0.052	(0.017	0.035	0.120	(0.049)	0.020	0.021	(0.031)	0.058	0.031	(0.026)
Normalized Factored Score			0.367	0.893	1.086		1.168	0.989				1.700	2.767	3.538	1.585		0.994	1.000			1.000	1.000		0.833	1.000	1.000	1.500		1.000	0.833
AHP Weighting Factor			0.17983	0.11328	0.02855		0.06253	0.13007	0.01002	and the state of t		0.06155	0.02052	0.02052	0.02507		0.08027	0.03274			0.01713	0.03522		0.05841	0.02013	0.02072	0.02057			0.03144
Ssues		AND THE RESERVE OF THE PROPERTY OF THE PROPERT	ODP	GLBLWRM	FSLFUELS	The second secon	ACIDDEP	SMOG	WTRUSE	AND THE PROPERTY OF THE PROPER	TOXICITY	HUMAN	ENVTERR	ENVAQ	LANDUSE		O&M COST	CAPITAL		APPLICEQ	1	SRFQUAL	PRIMER	TEMPHUM	CURERAT	SRFPREP	CLEANUP	THINNER	THNRATIO	FILMCHAR
Scale	CARCOPT	GLOBAL				REGIONAL	The same of the sa		And the second s	LOCAL	A COLUMN TO THE RESERVE THE PROPERTY OF THE PR	And the state of t	and the second s	marten der eine eine eine eine eine eine eine ei	THE PARTY OF THE P	COST	To the state of th		PERFORM			And the second s					reduced the property of the contract of the co	den son makada senda dan separah senda dan dan dan dan dan dan dan dan dan		

7.0 Implementation Plan

Previous sections have developed information on the environmental, cost, and performance aspects of five alternative CARC systems and combined this information through the use of a valuation process to provide an overall prioritization of the screened options. The results indicated that certain of the options provide significantly lower environmental hazard potential with minimal impact on cost and no discernable performance impairment. However, in order to implement the findings, there may be non-technical and non-economic issues to be dealt with. These areas include a lack of demonstrated application of the alternative in actual production operations, considerations relating to procurement practices of either materials or capital, and any incremental training of operators to use and properly dispose of the alternative equipment and materials. This section addresses these types of considerations.

7.1 Performance Demonstration

Performance demonstration refers to the actual painting of vehicles using the alternative system(s). Although the constraints established during the scoping exercise should be sufficient to ensure a reasonably high probability of success in implementing the alternative gun and/or primer system, it will likely be necessary to demonstrate their effectiveness prior to widespread adoption by the Army.

7.1.1 Application Equipment

The manufacturer should be able to recommend and demonstrate the necessary gun, nozzle, tip, and pressures for optimum coating with minimal thinning of all used coatings (primer and topcoat along with other non-CARC related coatings). Some manufacturers demonstrate the capabilities of a piece of equipment with a generic paint that highlights the optimum range of the equipment. Therefore, it is advisable that the manufacturer is instructed that the equipment will not be purchased without a demonstration of its use with the paints that are to be applied. Issues such as power and space requirements should also be discussed at this time. Any necessary modifications to the analysis should be incorporated before a final decision is made.

7.1.2 Primer

The major issue of the alternative primer is adhesion to the CARC topcoat. The level of adhesion between the primer and the topcoat can be influenced both by local environmental conditions and variations in topcoats amongst the different manufacturers. To determine local influences, the currently used primer and the alternative primer should be applied to test panels according to the manufacturer's recommendations. Topcoats should then be applied over the primers. Once the topcoat has been applied and allowed to cure, a cross-hatch adhesion test (ASTM D3359) should be used to check for adhesion between the primer and the topcoat. This procedure should be repeated periodically to test for the effects of changing environmental conditions. If any negative effects are noticed, then the temperature and humidity conditions should be noted along with any other changes in procedures that may have occurred. If the primer is found to perform poorly under certain conditions, then it may need to be limited to seasonal use. Again, any implications of this should be factored back into the analysis.

7.1.3 Thinner

A purchase of one gallon of the alternative thinner can easily be used for a performance evaluation. The thinner should be added to the CARC topcoat material until sprayable viscosity is achieved. The thinned topcoat should then be applied to a primed test panel. The surface should then be visually compared to a surface topcoated using the baseline thinner or currently used thinner. This procedure should also be repeated periodically to test for influences of changes in environmental conditions.

Comparisons of the change in viscosity of the currently used CARC topcoat due to equal additions of baseline or alternative thinner can also be measured. Typically, the difference in the effect on viscosity has not been noticeable. However, variations in topcoat formulations between manufacturers may result in more significant differences in thinner effectiveness. It is unlikely that the amount of alternative thinner will be measurably higher than that of the baseline. However, based on the foregoing analysis, if the amount of alternative thinner required is more than a modest percentage greater than that of the baseline, it will no longer provide a detectable advantage in terms of an environmental benefit.

7.2 Procurement Considerations

This implementation issue area addresses two considerations. One, if the alternative involves a capital item acquisition, it would be desirable to explore what steps might be necessary to justify its purchase and also to understand who would make the decision, particularly when the painting operations may not be performed by Army personnel. Second, if the materials used are not those currently being procured, it should be questioned how much of an issue it would be to change the procurement specification, especially if the initial cost is higher. Responses to these questions from the base personnel were used to formulate the information provided below. It should be noted that an exhaustive survey was not performed. It is possible that some locations may have more stringent requirements than those cited. However, the information presented is believed to be reasonably representative.

7.2.1 Application Equipment

The acquisition of a turbine HVLP system should require no approval beyond acceptance of the item managers involved. The item managers for the painted targets have the ultimate approval for how an item is painted. However, as long as the coated parts meet quality standards, the specific components or methods used are generally not an issue. Therefore, once the alternatives have been found acceptable via the performance demonstration, there should not be additional approval requirements.

The purchase price of a turbine system (approximately \$20,000 for four guns and a turbine) is significantly more than that of traditional HVLP equipment and thus merits additional considerations. This price and the presence of some information suggesting possible reliability problems may justify requesting or requiring a lease option. A lease would allow for the investigation of new equipment as it becomes available. Due to the competitive nature of the equipment manufacturers market, it is likely that other, less expensive equivalent turbine systems will be marketed in the next few years. Also, a service agreement which includes next day loaner equipment might prove invaluable, since the occurrence of downtime at key periods cannot be accepted.

7.2.2 Primers and Thinners

The primer and the thinner should also require no approval beyond the acceptance of the item managers. This acceptance should be received after the two alternatives have passed the performance demonstrations. Since both the alternative thinner and primers are either Military-Specified or Federal-Standard-Approved, they should be obtainable through the standard procurement channels. The Federal Stock Classes (FSCs), National Item Identification Number

(NIINs), manufacturer's CAGE numbers and Part Name/Number of the materials reviewed are available in the MSDSs provided.

7.3 Training Requirements

7.3.1 Application Equipment

The alternative application equipment, the Can-am turbine HVLP system, has been used at several locations and found to require only a few hours per man of familiarization. Safety concerns should be similar to those of standard HVLP equipment with the additional concerns of slightly larger air lines and the turbine itself. However, a demonstration by the manufacturer which includes discussions of safety and technique issues should still be utilized.

7.3.2 Primers and Thinners

There are no known new special handling requirements or training issues associated with the alternative primer or the alternative thinner. The same safety methods that are used for the current baselines should be followed. MSDS sheets should be read by each user and special consideration should be taken in the case of users who have sensitivities to certain chemicals. The primer is an amine-cured epoxy like the baseline and these systems have been associated with increased sensitivity among some users over time. The differences in the manufacturing of the alternative epoxy-amine system may have an effect on the rate of sensitization.

Some minor alterations in the application equipment's setup may be required to achieve optimum performance for the alternatively thinned topcoat and the alternative primer. The primer may also require slightly different application thicknesses or drying times between recoats. This information is available from the manufacturers. Finally, the thinner might change the curing rate of the topcoat and minor changes in scheduling may be required.

8.0 Conclusions

The analysis undertaken during the study leads to conclusions in two areas:, LCImA methodology and specific findings of the CARC case study. In the former, the results of the effort indicate:

- an LCA-based methodology for DfE is viable and leads to both broader and more cohesive insights into the tradeoffs among decision elements,
- the use of a valuation methodology, although not essential, makes it easier for the decision maker to identify preferred alternatives,
- aspects of the LCImA methodology are still limited in two ways; one, the analytic framework
 associated with the impact characterization could benefit from additional refinement efforts
 relative to the normalization step and two, there are data gaps and deficiencies in both the
 inventory and the impact assessment that must be carefully assessed before conclusions are
 drawn,
- the DfE approach, while applicable to the development of processes/procedures and their implementation, likely would fit better with a true LCA-based design exercise for a product.

In the area of application to the CARC case study, the following conclusions are drawn:

- the LCImA effort provided an excellent framework for the analysis -- CARC specialists, cost
 engineers, and environmental scientists were able to coherently address and integrate the
 various aspects of their work into a combined analysis that clearly identifies the tradeoffs
 involved,
- of the five alternatives considered, two of them (alternative gun and a combination of alternative primer and gun) demonstrate the potential for clear environmental improvement; the remaining three exhibit slight improvements that are not significant within the uncertainty of the analysis,
- when cost and performance are considered simultaneously with environment, the same two alternatives emerge as the preferred candidates for implementation but the degree of differentiation relative to the baseline is less. This may be understood in the light of the valuation process which assigns a level of influence in the final analysis to each of the three improvement assessment dimensions. When considered alone, environmental factors obviously exert all of the differentiating ability. When cost and performance considerations are added, the nature of the scoping process in this application limited the alternatives to those that were not expected to be strongly differentiable on these two dimensions. Thus, when the combined influence ascribed to these factors (35%) is considered, the overall differentiation magnitude is decreased. Nevertheless, Alternative 3 (primer and gun) still

clearly emerges as the recommended implementation choice followed by Alternative 2 (gun only).

9.0 Bibliography

- Aldrich Chemical Company. 1992. Catalog Handbook of Fine Chemicals. 1992-1993 ed. Aldrich Chemical Company, Milwaukee, WI. 1992 pp.
- Brown, H.L., B.B. Hamel, and B.A. Hedman. 1985. Energy Analysis of 108 Industrial Process. Fairmont Press, Philadelphia, PA. 314 pp.
- Bunnell, M. 1995. Telephone conversation between Mr. Mike Bunnell, President, Can-am and Mr. Kevin Taylor, Battelle, August 28, 1995.
- Cavender, K., S. Piccot, M. Tedijanto, and D. Russell. 1994. Pollution Prevention Opportunity Assessment: Chemical Agent Resistant Coating Operation at Ft. Eustis, Virginia. Draft Report. Prepared by Southern Research Institute, and Pacific Environmental Services, Incorporated for the U. S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, Office of Research and Development, Cincinnati, OH.
- Chemical Marketing Reporter. vol. 247. Jan-Jun 1995. Schnell Publishing Co., New York, NY.
- Department of the Army Technical Bulletin, 1991. *CARC Spot Painting*. Headquarters, Department of the Army.
- Duncan, J. 1995. Multiple telephone conversations between Jeff Duncan, Fort Belvoir Army Paint Research Facility and Kevin Taylor, Battelle, March 1995. Information is a composite of several communications between Mr. Duncan and Mr. Taylor.
- Ellis, W. 1986. Solvents. Federation Series on Coatings Technology. Federation Series on Coating Technologies, Philadelphia, PA, October, 29 pp.
- Ewalt, L. 1995. Multiple telephone conversations between Mr. Leon Ewalt, technical representative, Deft and Mr. Kevin Taylor, Battelle, July 95.
- Gmelin. 1932. Gmelins Handbuch der Anorganischen Chemie. Teil A, System Number 58. p 479.
- Gmelin. 1961. Gmelins Handbuch der Anorganischen Chemie. Supplement pp 58-61.
- Hale, J. 1995. Telephone conversation between Jerry Hale, Supervisor of CARC painting operations Ft. Eustits and Kevin Taylor, Battelle, July, 26, 1995. Results are based on conclusions drawn by Mr. Taylor from information obtained from conversations with Mr. Hale.
- Heijungs, R. (Final Editor). 1992a. Environmental Life-Cycle Assessment of Products: Guide October 1992. Report 9266. CML (Centre of Environmental Science) in Leiden, TNO (Netherlands Organisation for Applied Scientific Research) in Apeldoorn, and B&G (Fuels and Raw Materials Bureau) in Rotterdam, The Netherlands. 96 pp.

- Heijungs, R. (Final Editor). 1992b. Environmental Life-Cycle Assessment of Products: Backgrounds
 - October 1992. Report 9267. CML (Centre of Environmental Science) in Leiden, TNO
 (Netherlands Organisation for Applied Scientific Research) in Apeldoorn, and B&G (Fuels and
 Raw Materials Bureau) in Rotterdam, The Netherlands. 130 pp.
- Hendricks, D., R. Purcell, M. Tedijanto, and D. Russell. 1995. Life Cycle Inventory for Chemical Agent Resistant Coating. Draft Report. Prepared by Pacific Environmental Services, Incorporated for the U. S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, Office of Research and Development, Cincinnati, OH.
- Hocking, M.B. 1985. Modern Chemical Technology and Emission Control. Springer-Verlag, New York. 460 pp.
- Kirk-Othmer. 1978. Kirk-Othmer Encyclopedia of Chemical Technology. 3rd Edition. Wiley Interscience, New York, NY.
- Kirk-Othmer. 1991. Kirk-Othmer Encyclopedia of Chemical Technology. 4th Edition. Wiley Interscience, New York, NY.
- Lowenheim, F.A., and M.K. Morgan. 1975. Faith, Keyes, and Clark's Industrial Chemicals. 4th Edition. Wiley-Interscience, New York. 904 pp.
- Martin, J. 1995. Telephone conversation between Jimmy Martin, Sales Representative for Binks and Kevin Taylor, Battelle, 8/4/1995.
- Mayer, S. 1994. Personal communication, Nick Conkle to Steve Mayer, June 23, 1994 (Mayer was in charge of waste blasting-media disposal)
- McKetta. John J., Ed. 1992. Chemical Processing Handbook. Marcel Dekker, Inc., New York, NY. 972 pp.
- Merck. 1983. The Merck Index. 10th ed. Merck & CO, Rahway, NJ.
- Miller, T. 1995. Telephone conversations and facsimile questionaire between Tom Miller, Northrop Worldwide Aircraft Services (subcontracted by Fort Eustis to perform the painting) and Kevin Taylor Battelle, August 9-11, 1995. Results are based on conclusions drawn by Mr. Taylor from information obtained from conversations with Mr. Miller.
- Monzyk, B.F. 1995. Personal communication to J.R. Becker, Battelle by B.F. Monzyk, Chemical Process Engineer at Battelle (previously employed by Monsanto), August 10.
- Nordic Council. 1992. Product Life Cycle Assessment Principles and Methodology. The Nordic Council, Stockholm, Sweden. 288 pp.
- Peters, M.S., and K.D. Timmerhaus. 1991. Plant Design and Economics for Chemical Engineers. 4th Edition. McGraw-Hill, Inc., New York, NY. 910 pp.
- Saaty, T.L. 1990. The Analytic Hierarchy Process. RWS Publications, Pittsburgh, PA. 287pp.
- Society of Environmental Toxicology and Chemistry (SETAC). 1991. A Technical Framework for Life-Cycle Assessments. Society of Environmental Toxicology and Chemistry, and SETAC Foundation for Environmental Education, Inc., Washington, DC. 134pp.

- Society of Environmental Toxicology and Chemistry (SETAC). 1993. A Conceptual Framework for Life-Cycle Impact Assessment. Society of Environmental Toxicology and Chemistry, and SETAC Foundation for Environmental Education, Inc., Pensacola, FL. 160pp.
- Society of Environmental Toxicology and Chemistry (SETAC). 1994. Life-Cycle Assessment Data Quality: A Conceptual Framework. Society of Environmental Toxicology and Chemistry, and SETAC Foundation for Environmental Education, Inc., Pensacola, FL. 157pp.
- Seffick, S. 1995. Telephone conversation between Mr. Steve Seffick, sales representative, DeVilbiss and Mr. Kevin Taylor, Battelle July 24, 1995.
- Sittig, M. 1975. Environmental Sources and Emissions Handbook. Noyes Data Corporation, Park Ridge, NJ. 523 pp.
- Skillen, A. 1994. "Abrasive Blast Cleaning: Evolution or Revolution," Industrial Minerals, February, pp. 25-39.
- SRI International. 1993. 1993 Directory of Chemical Producers. SRI International, Menlo Park, CA.
- TRI. 1993. 1993 Toxic Release Inventory. On-line database available through TOXNET in the MEDLARS Clearinghouse offered by the National Library of Medicine, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD.
- U.S. Bureau of Mines. 1992. 1992 Minerals Yearbook: Volume I, Metals and Minerals. U.S. Department of the Interior, Bureau of Mines, U.S. Government Printing Office, Washington, DC., 1,495 pp.
- U.S. Bureau of Mines. 1995a. Mineral Industry Surveys: Chromium in 1994. Minerals Commodity Summaries - January. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 4 pp.
- U.S. Bureau of Mines. 1995b. Minerals Commodity Summaries 1995: Cobalt. FaxBack Document. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 2 pp.
- U.S. Bureau of Mines. 1995c. Minerals Commodity Summaries 1995: Iron Ore. FaxBack Document. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 2 pp.
- U.S. Bureau of Mines. 1995d. Minerals Commodity Summaries 1995; Salt. FaxBack Document. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 2 pp.
- U.S. Bureau of Mines. 1995e. Minerals Commodity Summaries 1995: Magnesium. FaxBack Document. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 2 pp.
- U.S. Bureau of Mines. 1995f. Minerals Commodity Summaries 1995: Zinc. FaxBack Document. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 2 pp.
- U.S. Bureau of Mines. 1995g. Minerals Commodity Summaries 1995: Bauxite and Alumina. FaxBack Document. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 2 pp.
- U.S. Bureau of Mines. 1995h. Minerals Commodity Summaries 1995: Soda Ash. FaxBack Document. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 2 pp.

- U.S. Bureau of Mines. 1995i. Minerals Commodity Summaries 1995: Thallium. FaxBack Document. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 2 pp.
- U.S. Bureau of Mines. 1995j. Minerals Commodity Summaries 1995; Stone (Crushed). FaxBack Document. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 2 pp.
- U.S. Bureau of Mines. 1995k. Minerals Commodity Summaries 1995: Phosphate Rock. FaxBack Document. U.S. Department of the Interior, Bureau of Mines, Washington, DC., 2 pp.
- U.S. Department of Energy. 1993. Annual Energy Review 1992. Energy Information Administration, U.S. Department of Energy, Washington, DC., 350 pp.
- U.S. Environmental Protection Agency (EPA). 1976. Quality Criteria for Water. U.S. Environmental Protection Agency, Washington, DC, 256 pp.
- U.S. Environmental Protection Agency (EPA). 1977. Industrial Process Profiles for Environmental Use. EPA-600/2-77-023. Cincinnati, Ohio.
- U.S. Environmental Protection Agency (EPA). 1990. AIRS Facility Subsystem Source Classification Codes & Emission Factor Listing for Criteria Air Pollutants. EPA 450/4-90-003. Office of Air Quality Planning & Standards: Technical Support Division: Monitoring & Reports Branch, Research Triangle Park, North Carolina.
- U.S. Environmental Protection Agency (EPA). 1993a. Life Cycle Design Guidance Manual: Environmental Requirements and the Product System. EPA600/R-92/226. Prepared by the National Pollution Prevention Center, University of Michigan for the Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH. 181 pp.
- U.S. Environmental Protection Agency (EPA). 1993b. Life-cycle Assessment: Inventory Guidelines and Principles. EPA/600/R-92/245. Prepared by Battelle and Franklin Associates, Inc. for the Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH. 108pp.
- U.S. Environmental Protection Agency (EPA). 1994. Chemical Hazard Evaluation for Management Strategies: A Method for Ranking and Scoring Chemicals by Potential Human Health and Environmental Impacts. Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, 95 pp.
- Wells, G. Margaret. 1991. Handbook of Petrochemicals and Processes. Gower Publishing Company, England.
- Wicks, Z.W., Jr. 1987. Corrosion Protection by Coatings. Federation Series on Caoatings Technology. Federation of Societies for Coatings Technology, Philadelphia, PA, February, 21 pp.
- Woody, G. 1995. Telephone conversation between Gene Woody, Supervisor of CARC painting operations Ft. Campbell and Kevin Taylor, Battelle, July 21, 1995. Results are based on conclusions drawn by Mr. Taylor from information obtained from conversations with Mr. Woody.
- Young, J.S., L. Ambrose, and L. Lobo. 1994. Stirring Up Innovation: Environmental Improvements in Paints and Adhesives. Inform, Inc., New York, NY. 116 pp.

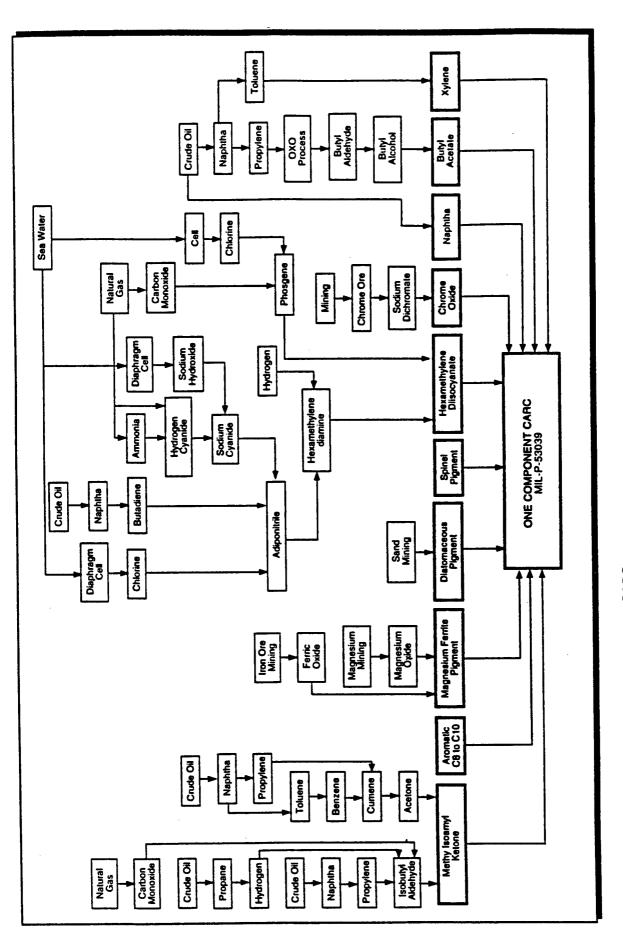


Figure A-1. Process flowsheet for one-component CARC

Figure A-2. Process flowsheet for Part A, baseline primer

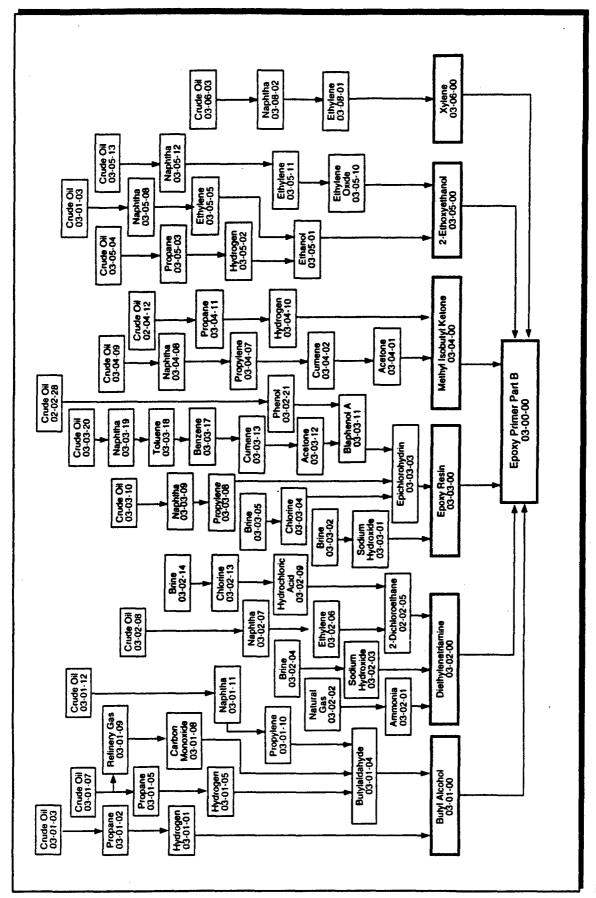


Figure A-3. Process flowsheet for Part B, baseline primer

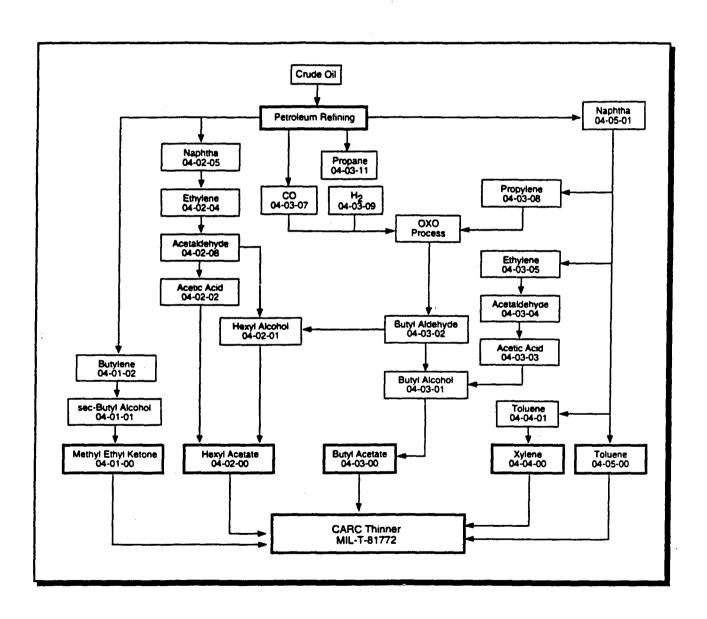


Figure A-4. Process flowsheet for baseline thinner

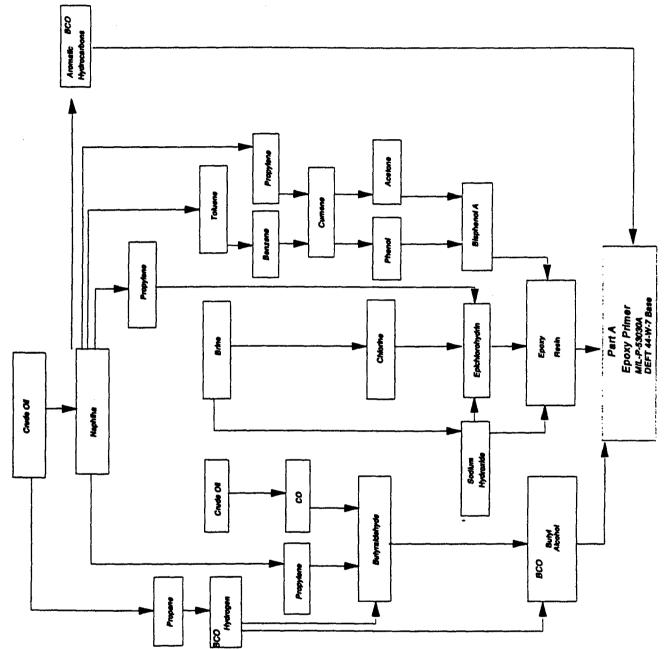


Figure A-5. Process Flowsheet for Part A, Alternative Primer (BCO=data obtained by Battelle Columbus Operations; all other data from PES)

Figure A-6. Process Flowsheet for Part B, Alternative Primer (BCO=data obtained by Battelle Columbus Operations; all other data from PES)

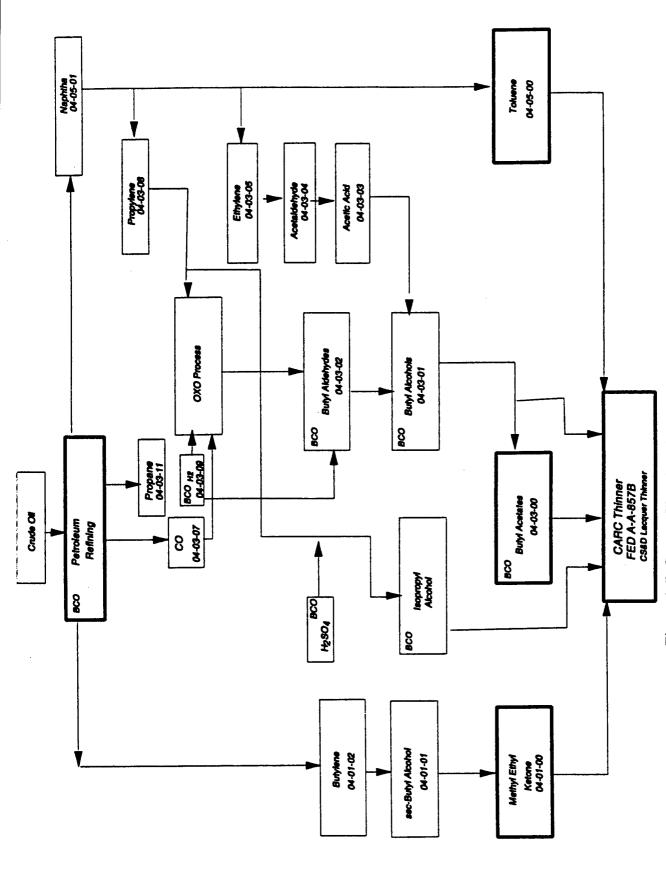


Figure A-7. Process Flowsheet for Alternative Thinner (BCO=data obtained by Battelle Columbus Operations; all other data from PES)

APPENDIX B MATERIAL SAFETY DATA SHEETS (MSDSs)

CARC PAINT

Page 1

MATERIAL SAFETY DATA SHEET

08605GUZ-GD

FOR COATINGS, RESINS AND RELATED MATERIALS

Prepared By- JANE FREEMAN

Date of Preparation- 04-26-93

Manufacturer: Hentman Coatings, Inc.

Address : 6937 West Mill Road

Milwaukee, Wisconsin 53218

Night: Not Available Telephone #: (414)353-4200

Interprope #: (414)353-4200 Might: (320)424-9300 (Chemtree)

SECTION I -- PRODUCT IDENTIFICATION

Manufacturer's Code Identification: 0880SGUZ Contract #G8-10F-52323 Product Class: ALIPHATIC POLTISOCTANATE N3N 3010-01-229-7547

Trade Name: 383 GREEN ZENTHANE, MIL-C-53039A

HMIS Information: Health- 2° Flammability- 3
Reactivity- 1 Personal Protective Equipment-

Hazardous Itan per Fed. Std. 313C, Paragraph 3.38: Tas

SECTION II -- HAZARDOUS INGREDIENTS

METHIL ISOAMIL KETONE SOLVENT

01 CAS# 110-12-3

% BT WT: 23.787

EXPOSURE LIMIT:

ACGIH TLY/TWA SO PPM 50 PPM OSHA PEL

OTHER INFCRMATION RTECS #MP3850000

MAGNESIUM-FERRITE PIGMENT

CAS# 12068-86-9 0.2

% BT WT: 1 - 5

EMPOSURE LIMIT: .

15 MG/M3 ACGIH TLY/TWA 10 MG/M3

OSHA PEL OSHA PEL 10 MG/M3
OTHER LIMITS (NUISANCE DUST)
OTHER INFGRMATION NO RTECS # FOUND

SILICA PIGMENT

CAS# 14808-60-7 03

% BT WT: 20 - 30

EXPOSURE LIMIT:

0.1 MG/H3 ACGIH TLV/TWA 0.1 MG/M3 OSHA PEL

HENTZEN COATINGS, INC.

0860SGUZ-GD MATERIAL SAFETY DATA SHEET Page

383 GREEN ZENTHANE, MIL-C-53039A

SECTION II -- HAZARDOUS INGREDIENTS

RTECS #VV7330000 OTHER INFORMATION -----

HOMOPOLYMER OF HEXAMETHILENE DIISOCTANATE

CAS# 28182-81-2

% BT WT: 20 - 30

EXPOSURE LIMIT:

*EXACT FERCENTAGE: EXACT PERCENTAGE IS A TRADE SECRET ACGIN TLV/TWA NOT ESTABLISHED

ACGIH TLV/TWA NOT ESTABLISHED OSHA PEL

OTHER LIMITS MFR.'S TWA = 0.5 MG/M3, STEL = 1.0 MG/M3

NO RTECS # FOUND OTHER INFORMATION

TRIVALENT CHROME

OS (INSOLUBLE) CAS# 7440-47-3

% BT WT: 5.866

EXPOSURE LIMIT:

0.5 MG/M3 ACGIR TLV/TWA 0.5 MG/M3 OSHA PEL

OTHER INFORMATION RTECS #GB4200000

INORGANIC SPINEL PIGMENT

CAS# NOT AVAIL.

% BT WT: 1 - 5

EXPOSURE LIMIT:

AVINVIT RIDDA NOT ESTABLISHED OSHA PEL NCT ESTABLISHED

NOT LISTED BY OSHA OR ACGIH. OTHER LIMITS

OTHER INFORMATION NO RIECS # FOUND

AROMATIC HIDROCARBONS

(MIXTURE OF C3'S TO C10'S)

07 CAS# 64742-95-6

% BT WT: 1.498

EXPOSURE LIMIT:

NOT ESTABLISHED ACGIH TL7/TWA OSHA FEL NOT ESTABLISHED

OTHER LINITS 100 PPM = MFR.'S LIMIT

NO RTECS # FOUND OTHER INFORMATION

BUTTL ACETATE SOLVENT

CAS# 123-86-4 08

% BT WT: 1.194

EAPOSURE LIMIT:

150 PPM ACGIR TLV/TWA 150 PPM OSHA PFT

HENTZEN COATINGS, INC. MATERIAL SAFETY DATA SHEET Page 383 GREEN ZENTHANE, MIL-C-53039A ********************** SECTION II -- HAZARDOUS INCREDIENTS 200 PPM = STEL OTHER LIMITS RTECS #AF7350000 OTHER INFORMATION HEXAMETHILENE DIISOCTANATE MONOHER CAS# 822-06-0 % BT WT: 0.048 EXPOSURE LIMIT: 0.005 PPM ACGIH TLV/TWA OSHA PEL 0.005 PPM OTHER INFORMATION RTECS #M01740000 VM&P NAPHTHA SOLVENT CAS# 64742-89-8 10 % BT WI: 4.795 EXPOSURE LIMIT: ACGIH TLY/TWA 300 PPM 300 PFM OSHA PEL OTHER INFORMATION RIECS #SE7555000 XILENE SOLVENT CAS# 1330-20-7 11 % BT WT: 2.040 EXPOSURE LIMIT: ACGIH TLV/TWA 100 PFM 100 PPH OTHER LIMITS STEL = 150 PPM RTECS #ZE2100000 OTHER INFORMATION ******************************* This product contains no known carcinogens that are reportable. ************************* SECTION III -- PHISICAL DATA Boiling Range: High- 418.0 F (214°C) Low- 144.0 F (118°C) Vapor Pressure: 15,00 mm Hg at 66 F Vapor Density: Heavier Than Air Evaporation Rate: Faster than Butyl Acetate Weight per Gallon: 10.29/ Specific Gravity: 1.23 Specific Gravity: % Nonexempt Solvent by Volume: \$1.53 33.94 % Nonemempt Solvent by Weight: VOC: 3.488 Lbs/Gal 418.542 Grams/liter Appearance: Opaque Liquid Odor: Solvent Odor Odor Threshhold: 0.1 FPM Viscosity: 65 - 68 Krebs Units pH: Not Applicable

HENTZEN COATINGS, INC.

0860SGUZ~GD MATERIAL SAFETY DATA SHEET Page 4

383 GREEN ZENTHANE, MIL-C-53039A

Freezing Point: Not Available

Water Solubility: REACTS WITH WATER

Coefficient of Water/Oil Distribution: Not Available

SECTION IV -- FIRE AND EXPLOSION EARARD DATA

Flammability Classification: Class 18 DOT: Flammable Liquid

Actual Flashpoint TCC: 54.0 F (12°C)

Explosion Level: Lower- 0.9 Upper- 8.2

Auto Ignition Temperature: 450.0 F (232°C)

Decomposition Temperature: 400F (204C)

Melting point: Not Applicable

Magnetism & Corrosion Rate: Not Applicable

EXTINGUISHING MEDIA: (X)-FOAM (X)-ALCOHOL FOAM (X)-CO2

(N)-DRT CHEMICAL ()-WATER FOG ()-OTHER UNUSUAL FIRE AND EXPLOSION HAZARDS: Keep containers tightly closed. Isolate from heat, electrical equipment, sparks and open flame. Closed container may amplode when exposed to extreme heat or burst when contaminated with water (CO2 evolved). Do not apply to hot surfaces. Never use welding or cutting torch on or near drum (even empty) because product (even

residue) can ignite explosively.

SPECIAL FIRE FIGHTING PROCEDURES: Full protection equipment with selfcontained breathing apparatus should be worn. During a fire, irritating
and highly toxic gases (see Reactivity Data) and shoke are present from the
decomposition/combustion products.

SECTION V -- REACTIVITY DATA

NEUTRALIZING AGENT: 0% - 10% Ammonium Hydroxide, 2% - 5% Detergent and the balance is water; or a solution of NIACT Corp.'s Targitol TMN-10 (20%) and water (80%).

STABILITT: () - UNSTABLE (X) - STABLE

HAZARDOUS POLYMERIZATION () - WILL OCCUR (X) - WILL NOT OCCUR HAZARDOUS DECOMPOSITION PRODUCTS: BT FIRE: COZ. CO, oxides of Nitrogen, traces of Hydrogen Cyanide, Hexamethylene Diisocyanate.

CONDITIONS TO AVOID: Contamination with water. spory catalysts, alcohols, glycol ethers, bases, metal complexes or other active materials.

Once the material has been exposed to any of the above or atmospheric moisture, do not seal container as hazardous COZ gas could build up in the container resulting in rapid depressurisation.

INCOMPATIBILITY: See CONDITIONS TO AVGID.

SECTION VI -- HEALTH HAZARD DATA

EFFECTS OF OVEREXPOSURE:

TO VAPOR AND/OR MIST: Can cause irritation to skin, eyes and respiratory tract (nose, throat, lungs). Symptoms may be watering eyes, dryness of throat, coughing, headache, tightness in chest or burning sensation. Headache, dizziness or nausea may be experienced by some as a result of exposure to solvents.

PRIMARY ROUTES OF ENTRY: DERMAL and INHALATION

HENTZEN COATINGS, INC.

OBGOSGUZ-GD MATERIAL SAFETY DATA SHEET

Page

383 GREEN ZENTHAME, MIL-C-53039A

system damage, liver and kidney damage. Chronic overexposure to isocyanate containing products may lead to respiratory sensitization characterized by asthma-like symptoms and/or skin sensitization characterized by allergic dermatitis which may include rash, itching, hives and swelling of the extremities.

Based upon laboratory animal data, IARC has listed Silica as a "Probable Human Carcinogen". May cause lung injury if respiratory protection is not used.

Some reports have associated repeated and prolonged contact with Trivalent Chrome to dermatitis. Avoid contact with eyes, skin and clothing. Wash thoroughly after handling.

EMERGENCY AND FIRST AID PROCEDURES: INHALATION: Remove from exposure. Restore breathing. Keep warm and quiet. Notify a physician.

ETES: Flush immediately with large amounts of running water for at least 15 minutes while listing avelids. Take to a physician for treatment. SKIN: Wash affected areas with soap and water. Remove contaminated clothing. Wash before reuse. Consult a physician if irritation develops or persists.

INGESTION: If swallowed, CALL A PHYSICIAN OR POISON CONTROL CENTER IMMEDIATELT.

MEDICAL CONDITIONS PRONE TO AGGRAVATION BY EXPOSURE: Asthma and other respiratory ailments; chemical sensitization.

SECTION VII -- PRECAUTIONS FOR SAFE SANDLING AND USE

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED: Evacuate nonessential personnel. Remove all sources of ignition (flames, hot surfaces,
electrical, static or frictional sparks). Vantilate area. Avoid breathing
vapors. Cover spill with inert absorbent. Pour liquid decontaminant over
spillage—allow to react for at least 10 minutes; collect material in open
containers—add further amounts of decontamination solution. Remove
containers to safe place—cover loosely. Wash down area with decontaminant
and flush spill area with water.

WASTE DISPOSAL METHODS: Dispose of in accordance with local, state and Federal regulations. Decontaminate containers prior to disposal. PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING; Do not store above 120 F or below 32 F. Store large quantities in buildings designed to comply with OSHA 1910.105. Keep away from sparks and open flame. Keep containers tightly closed and protect from moisture. If acisture enters container, pressure can build up due to reaction producing COZ which can cause scaled container to pressurize and burst. Do not rescal if contamination is suspected.

OTHER PRECAUTIONS: Do not take interbally. Containers should be grounded when pouring. Avoid free fall of liquid in excess of a few inches. Use with adequate ventilation and respiratory equipment. Emptied containers may retain hazardous residue or explosive vapors. Follow all precautions in this data sheet until container is thoroughly cleaned or destroyed.

HENTZEN COATINGS, INC. MATERIAL SAFETY DATA SHEET Page 0860SGUZ-GD 383 GREEN CENTHANE, MIL-C-53039A SECTION VIII -- CONTROL MEASURES RESPIRATORY PROTECTION: The Surgeon General requires airline respirators to be used unless air sampling shows emposure to be below OSHA limits. Then, either chemical cartridge respirators or airline respirators are required. The same precautions should be used during mixing or any operations where paint fumes would be present. VENTILATION: Provide general dilution or local exhaust ventilation in volume and pattern to keep the air contaminant concentration below current applicable OSHA safety and health requirements in the mixing, application and curing areas; and to remove decomposition products during welding and flame cutting on surfaces coated with this product. PROTECTIVE GLOVES: Chemical resistant gloves. ETE PROTECTION: Use safety eyewear with splash guards and side shields. OTHER PROTECTIVE EQUIPMENT: Wear protective clothing to keep skin contact at a minimum. HYGIENIC PRACTICES: Wash hands and any exposed skin thoroughly before eating or smoking. Smoke in designated areas only. SECTION IX -- TRANSPORTATION SHIPPING NAME: PAINT APPLICABLE REGULATION: 49 CFR 171 ID #: UN1263 REPORTABLE QUANTITY: 100 lbs. HAZARD CLASS: 3 LABEL: FLAMMABLE LIQUID UNIT CONTAINER: CN (Five Gallons) DOT SPECIFICATION CONTAINER: 24 Gage Steel DOT EXEMPTION: NOME LIMITED QUANTITY: YES U.S. POSTAL SERVICE: Will not handle NET EXPLOSIVE WEIGHT: Not Applicable AEROSOL PROPELLANTS: Not Applicable DISPOSAL INFORMATION: EFA HAZARDOUS WASTE NUMBER/CODE: DOOL HAZARDOUS WASTE CHARACTERISTICS: Ignitable DISPOSAL METHODS: Incineration SECTION X -- SECTION 313 TOXIC CHEMICALS This product contains the following toxic chemicals subject to the reporting requirements of Section 313 of the Energency Planning and Community Right-To-Know Act of 1986 and of 40 CFR 372:

B-6

CAS Number

7440-47-3

1330-20-7

Chemical

TRIVALENT CHROME

XILENE SOLVENT

Weight %

6.866

2.040

HENTZEN COATINGS, INC.

O8605GUZ-GD MATERIAL SAFETT DATA SHEET

383 GREEN ZENTHANE, MIL-C-\$3039A

Page

7

FROM OUR RAW MATERIAL SUPPLIERS AND CTHER SOURCES AND IS BELIEVED TO BE RELIABLE. THIS DATA IS NOT TO BE TAKEN AS A WARRANTY OR REPRESENTATION FOR WHICH HENTZEN COATINGS, INC. ASSUMES LEGAL RESPONSIBILITY.

DOD Hazardous Materials Information System DoD 6050.5-L AS OF April 1995

FSC: 8010

NIIN: 00D002882

Primer Part A

Manufacturer's CAGE: 02388

Part No. Indicator: A

Net Unit Weight: UNKNOWN

Part Number/Trade Name: N-1088A WHITE EPOXY PRIMER

General Information

Item Name: WHITE EPOXY PRIMER Manufacturer's Name: NILES CHEMICAL PAINT CO. Manufacturer's Street: 225 FORT STREET Manufacturer's P. O. Box: 307 Manufacturer's City: NILES Manufacturer's State: MI Manufacturer's Country: US Manufacturer's Zip Code: 49120 Manufacturer's Emerg Ph #: 800-627-1948, 219-236-5856 Manufacturer's Info Ph #: 616-683-3377 Distributor/Vendor # 1: Distributor/Vendor # 1 Cage: Distributor/Vendor # 2: Distributor/Vendor # 2 Cage: Distributor/Vendor # 3: Distributor/Vendor # 3 Cage: Distributor/Vendor # 4: Distributor/Vendor # 4 Cage: Safety Data Action Code: Safety Focal Point: G Record No. For Safety Entry: 001 Tot Safety Entries This Stk#: 001 Status: SE Date MSDS Prepared: 23AUG92 Safety Data Review Date: 290CT92 Supply Item Manager: GSA MSDS Preparer's Name: MIKE LICHATOWICH Preparer's Company: Preparer's St Or P. O. Box: Preparer's City: Preparer's State: Preparer's Zip Code: Other MSDS Number: MSDS Serial Number: BPCGR Specification Number: MIL-P-53022B Spec Type, Grade, Class: Hazard Characteristic Code: F3 Unit Of Issue: EA Unit Of Issue Container Qty: UNKNOWN Type Of Container: UNKNOWN

Report for NIIN: 00D002882

NRC/State License Number: N/R

Net Explosive Weight:

Net Propellant Weight-Ammo: N/R Coast Guard Ammunition Code:

Ingredients/Identity Information

Proprietary: NO

Ingredient: N-BUTYL ACETATE (SARA III)

Ingredient Sequence Number: 01

Percent: 26

Ingredient Action Code: Ingredient Focal Point: G

NIOSH (RTECS) Number: AF7350000

CAS Number: 123-86-4

OSHA PEL: 150 PPM/200 STEL ACGIH TLV: 150 PPM/200STEL;9192

Other Recommended Limit: NONE SPECIFIED

Proprietary: NO

Ingredient: EPOXY RESIN

Ingredient Sequence Number: 02

Percent: 22

Ingredient Action Code: Ingredient Focal Point: G

NIOSH (RTECS) Number: 1000131ER

CAS Number: 25036-25-3 OSHA PEL: NOT ESTABLISHED ACGIH TLV: NOT ESTABLISHED

Other Recommended Limit: 5 MG/M3 TLV

Proprietary: NO

Ingredient: N-BUTYL ALCOHOL (SARA III)

Ingredient Sequence Number: 03

Percent: 8

Ingredient Action Code: Ingredient Focal Point: G

NIOSH (RTECS) Number: E01400000

CAS Number: 71-36-3 OSHA PEL: 100 PPM

ACGIH TLV: S, C 50 PPM; 9293

Other Recommended Limit: NONE SPECIFIED

Proprietary: NO

Ingredient: ZINC PHOSPHATE
Ingredient Sequence Number: 04

Percent: 4

Ingredient Action Code: Ingredient Focal Point: G

NIOSH (RTECS) Number: 1001478ZP

CAS Number: UNKNOWN

OSHA PEL: NOT ESTABLISHED GIH TLV: NOT ESTABLISHED

Report for NIIN: 00D002882 Other Recommended Limit: NONE SPECIFIED Proprietary: NO Ingredient: METHYL ISOBUTYL KETONE (SARA III) Ingredient Sequence Number: 05 Percent: 2 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: SA9275000 CAS Number: 108-10-1 OSHA PEL: 100 PPM/75 STEL ACGIH TLV: 50 PPM/75 STEL; 9293 Other Recommended Limit: NONE SPECIFIED Proprietary: NO Ingredient: PROPRIETARY INGREDIENTS Ingredient Sequence Number: 06 Percent: BALANCE Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: 1004255PI CAS Number: UNKNOWN OSHA PEL: NOT ESTABLISHED ACGIH TLV: NOT ESTABLISHED Other Recommended Limit: NONE SPECIFIED Physical/Chemical Characteristics Appearance And Odor: LIQUID, ODOR OF SOLVENTS. Boiling Point: 242F,117C Melting Point: UNKNOWN Vapor Pressure (MM Hg/70 F): UNKNOWN Vapor Density (Air=1): > AIR Specific Gravity: 1.347 Decomposition Temperature: UNKNOWN Evaporation Rate And Ref: SLOWER THAN ETHER Solubility In Water: SLIGHT Percent Volatiles By Volume: 59.63 Viscosity: pH: N/K Radioactivity: Form (Radioactive Matl): Magnetism (Milligauss): Corrosion Rate (IPY): MINIMAL Autoignition Temperature: Fire and Explosion Hazard Data

Flash Point: 72.0F,22.2C Flash Point Method: TCC Lower Explosive Limit: 1.4 Upper Explosive Limit: 11.0

tinguishing Media: DRY CHEMICAL, FOAM, CARBON DIOXIDE.

Report for NIIN: 00D002882

Special Fire Fighting Proc: WEAR SCEA WITH FULL FACEPIECE IN POSITIVE DRESS MODE/FULL PROTECT CLOTHES. USE H2O TO COOL CLOSED CONTAINERS TO PREVENT PRESS BUILDUP, AUTOIGNITION, EXPLOSION.

Unusual Fire And Expl Hazrds: VAPORS ARE HEAVIER THAN AIR AND MAY TRAVEL ALONG GROUND TO IGNITION SOURCE. CLOSED CONTAINERS MAY EXPLODE WHEN EXPOSED TO EXTREME HEAT.

Reactivity Data

Stability: YES

Cond To Avoid (Stability): MATERIAL IS STABLE UNDER REASONABLE CONDITIONS OF STORAGE AND USE. AVOID HIGH TEMPERATURES AND SHOCK FROM DROPPING.

Materials To Avoid: NITRATES, STRONG OXIZIDERS, ALKALIS, ACIDS.

Hazardous Decomp Products: CAN PRODUCE CARBON MONOXIDE AND/OR CARBON DIOXIDE.

Hazardous Poly Occur: NO

Conditions To Avoid (Poly): WILL NOT OCCUR.

Health Hazard Data

LD50-LC50 Mixture: UNKNOWN

Route Of Entry - Inhalation: YES

Route Of Entry - Skin: YES

Route Of Entry - Ingestion: YES

Health Haz Acute And Chronic: EYES: SEVERE IRRITATION, BLURRED VISION. SKIN: HARMFULL IF ABSORBED THROUGH SKIN. CAN BE ABSORBED IN TOXIC AMOUNTS FROM PROLONGED EXPOSURES. INHALATION: NASAL AND RESPRIRATORY IRRITATION, CNS DEPRESSION, NAUSEA, UNCONSCIOUSNESS, ASPHYXIATION. INGESTION: GI IRRITATION, ABDOMINAL PAIN, NAUSEA, VOMITING, DIARRHEA.

Carcinogenicity - NTP: NO

Carcinogenicity - IARC: NO Carcinogenicity - OSHA: NO

Explanation Carcinogenicity: NOT LISTED BY NTP, IARC, OSHA.

Signs/Symptoms Of Overexp: EYES: SEVERE IRRITATION. TEARING, REDNESS, BLURRED VISION. INHALATION: NASAL AND RESPIRATORY IRRITATION, CNS DEPRESSION, DIZZINESS, DROWSINESS, WEAKNESS, FATIGUE, CONFUSION, NAUSEA, HEADACHE, VERTIGO. POSSIBLE UNCONSCIOUSNESS, EVEN ASPHYXIATION. INGESTION: GI IRRITATION, ABDOMINAL PAIN, NAUSEA, VOMITING, DIARRHEA.

Med Cond Aggravated By Exp: NONE KNOWN.

Emergency/First Aid Proc: EYES: FLUSH WITH LARGE AMOUNTS OF WATER. GET MEDICAL ATTENTION. SKIN: REMOVE CONTAMINATED CLOTHING. FLUSH AREA WITH LARGE AMOUNTS OF WATER. INHALATION: MOVE TO FRESH AIR. IF NOT BREATHING GIVE CPR. GET MEDICAL ATTENTION. INGESTION: DRINK 1 OR 2 GLASSES OF WATER. DO NOT INDUCE VOMITING. GET MEDICAL ATTENTION.

Precautions for Safe Handling and Use

Steps If Matl Released/Spill: ELIMINATE ALL IGNIT SOURCES. ABSORB WITH INERT MATERIAL SUCH AS CLAY, SOIL OR A COMMERCIALLY AVAILABLE ABSORBENT. SHOVEL RECLAIMED LIQUID/ABSORBENT INTO RECOVERY/SALVAGE DRUM OR TANK TRUCK FOR DISPOSAL. DIKE LARGE SPILLS TO PREVENT RUNOFF. Neutralizing Agent: NONE SPECIFIED BY MANUFACTURER.

Waste Disposal Method: DISPOSE OF WASTE IN ACCORDANCE WITH APPLICABLE

Report for NIIN: 00D002882

LOCAL, STATE AND FEDERAL REGUATIONS.

PRecautions-Handling/Storing: AVOID STORAGE IN HIGH TEMPERATURE AREAS OR NEAR FIRE OR OPEN FLAME. KEEP CONTAINERS CLOSED. AVOID ROUGH HANDLING AND PROTECT FROM PHYSICAL DAMAGE.

Other Precautions: CONTAINERS OF THIS MATERIAL MAY BE HAZARDOUS WHEN EMPTY. DO NOT WELD OR FLAME CUT ON EMPTY DRUMS.

Control Measures

Respiratory Protection: WEAR APPROPRIATE PROPERLY FITTED HALF-MASK/FULL FACEPIECE RESPIRATOR DURING AND AFTER APPLICATION UNLESS AIR MONITORING DEMONSTRATES VAPOR/MIST LEVELS ARE BELOW APPLICABLE LIMITS .FOLLOW RESPIRATOR MANUFACTURES DIRECTIONS FOR USE.

Ventilation: SUFFICIENT VENTILATION TO KEEP AIR CONCENTRATION BELOW PERMISSIBLE EXPOSURE LIMITS. VENT VAPOS WHEN BAKING FINISHES.

Protective Gloves: NITRILE OR VITON GLOVES

Eye Protection: CHEM GOGGLES, SAFETY GLASSES, FACESHIELD.

Other Protective Equipment: NITRILE OR VITON CLOTHING AS NEEDED TO PREVENT SKIN CONTACT.

Work Hygienic Practices: WASH AFTER HANDLING AND BEFORE EATING, DRINKING, SMOKING, OR USING RESTROOM. LAUNDER CONTAMINATED CLOTHING BEFORE REUSE. Suppl. Safety & Health Data: CONTACT LENSES SHOULD NOT BE WORN WHEN WORKING WITH THIS MATERIAL.

DOD Hazardous Materials Information System DoD 6050.5-L

Primer Part B

AS OF April 1995

₹5C: 8010

MIIN: 00D002883

Manufacturer's CAGE: 02388

Part No. Indicator: A

Part Number/Trade Name: N-1088BM 4:1 BLEND

General Information

Item Name: ENAMEL, EPOXY, YELLOW

Manufacturer's Name: NILES CHEMICAL PAINT CO.

Manufacturer's Street: 225 FORT STREET

Manufacturer's P. O. Box: 307 Manufacturer's City: NILES Manufacturer's State: MI Manufacturer's Country: US Manufacturer's Zip Code: 49120

Manufacturer's Emerg Ph #: 800-627-1948, 219-236-5656

Manufacturer's Info Ph #: 616-683-3377

Distributor/Vendor # 1: Distributor/Vendor # 1 Cage:

Distributor/Vendor # 2:

Distributor/Vendor # 2 Cage:

Distributor/Vendor # 3:

Distributor/Vendor # 3 Cage:

Distributor/Vendor # 4:

Distributor/Vendor # 4 Cage:

Safety Data Action Code:

Safety Focal Point: G

Record No. For Safety Entry: 001 Tot Safety Entries This Stk#: 001

Status: SE

Date MSDS Prepared: 23SEP92

Safety Data Review Date: 280CT92

Supply Item Manager: GSA

MSDS Preparer's Name: MIKE LICHATOWICH

Preparer's Company:

Preparer's St Or P. O. Box:

Preparer's City: Preparer's State: Preparer's Zip Code: Other MSDS Number:

MSDS Serial Number: BPCGS

Specification Number: MIL-P-53022B

Spec Type, Grade, Class:

Hazard Characteristic Code: F4

Unit Of Issue: EA

Unit Of Issue Container Qty: UNKNOWN

Type Of Container: UNKNOWN Net Unit Weight: UNKNOWN

Report for NIIN: 00D002883 NRC/State License Number: N/R Net Explosive Weight: Net Propellant Weight-Ammo: N/R Coast Guard Ammunition Code: Ingredients/Identity Information Proprietary: NO Ingredient: METHYL ISOBUTYL KETONE (SARA III) Ingredient Sequence Number: 01 Percent: 28 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: SA9275000 CAS Number: 108-10-1 OSHA PEL: 100 PPM/75 STEL ACGIH TLV: 50 PPM/75 STEL; 9293 Other Recommended Limit: NONE SPECIFIED Proprietary: NO Ingredient: EPOXY RESIN Ingredient Sequence Number: 02 Percent: 23 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: 1000131ER CAS Number: UNKNOWN OSHA PEL: NOT ESTABLISHED ACGIH TLV: NOT ESTABLISHED Other Recommended Limit: NONE SPECIFIED _________ Proprietary: NO Ingredient: N-BUTYL ALCOHOL (SARA III) Ingredient Sequence Number: 03 Percent: 17 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: E01400000 CAS Number: 71-36-3 OSHA PEL: 100 PPM ACGIH TLV: S, C 50 PPM; 9293 Other Recommended Limit: NONE SPECIFIED Proprietary: NO Ingredient: 2-ETHOXYETHANOL (EGEE) (SARA III) Ingredient Sequence Number: 04 Percent: 11 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: KK8050000 CAS Number: 110-80-5

OSHA PEL: S,200 PPM

GIH TLV: S, 5 PPM; 9192

Report for NIIN: 00D002883 Other Recommended Limit: NONE SPECIFIED Proprietary: NO Ingredient: XYLENES (O-,M-,P- ISOMERS) (SARA III) Ingredient Sequence Number: 05 Percent: 11 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: ZE2100000 CAS Number: 1330-20-7 OSHA PEL: 100 PPM/150 STEL ACGIH TLV: 100 PPM/150STEL;9192 Other Recommended Limit: NONE SPECIFIED Proprietary: NO Ingredient: DIETHYLENE TRIAMINE Ingredient Sequence Number: 06 Percent: 8 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: IE1225000 CAS Number: 111-40-0 OSHA PEL: 1 PPM ACGIH TLV: S, 1 PPM; 9192 Other Recommended Limit: NONE SPECIFIED Proprietary: NO Ingredient: PROPRIETARY INGREDIENTS Ingredient Sequence Number: 07 Percent: BALANCE Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: 1004255PI CAS Number: UNKNOWN OSHA PEL: NOT ESTABLISHED ACGIH TLV: NOT ESTABLISHED Other Recommended Limit: NONE SPECIFIED Physical/Chemical Characteristics Appearance And Odor: LIQUID, ODOR OF SOLVENTS Boiling Point: 242F, 117C Melting Point: UNKNOWN Vapor Pressure (MM Hg/70 F): UNKNOWN Vapor Density (Air=1): > AIR Specific Gravity: 0.905 Decomposition Temperature: UNKNOWN Evaporation Rate And Ref: SLOWER THAN ETHER Solubility In Water: SLIGHT

Percent Volatiles By Volume: 74.70

Viscosity: pq: N/K

Radioactivity:

Report for NIIN: 00D002883

Form (Radioactive Matl): Magnetism (Milligauss):

Corrosion Rate (IPY): MINIMAL

Autoignition Temperature:

Fire and Explosion Hazard Data

Flash Point: 73.0F,22.8C Flash Point Method: TCC Lower Explosive Limit: 1.0 Upper Explosive Limit: 14

Extinguishing Media: DRY CHEMICAL, FOAM, CO2

Special Fire Fighting Proc: WEAR SCBA WITH FULL FACEPIECE IN POS PRESS MODE/FULL PROTECT CLOTHES.USE H20 TO COOL CLOSED CONTAINERS TO PREVENT PRESS BUILDUP AND AUTOIGNITION OR EXPLOSION.

Unusual Fire And Expl Hazrds: VAPORS ARE HEAVIER THAN AIR AND MAY TRAVEL ALONG GROUND TO IGNITION SOURCE. ISOLATE FROM HEAT, IGNITION SOURCES. APPLICATION TO HOT SURFACES NEED SPECIAL CARE.

Reactivity Data

Stability: YES

Cond To Avoid (Stability): HIGH TEMPERATURES, IGNITION SOURCES. SHOCK FROM DROPPING.

Materials To Avoid: STRONG OXIDIZERS

Hazardous Decomp Products: CAN PRODUCE CARBON MONOXIDE AND/OR CARBON DIOXIDE.

Hazardous Poly Occur: NO

Conditions To Avoid (Poly): WILL NOT OCCUR.

Health Hazard Data

LD50-LC50 Mixture: UNKNOWN

Route Of Entry - Inhalation: YES

Route Of Entry - Skin: YES

Route Of Entry - Ingestion: YES

Health Haz Acute And Chronic: EYES: SEVERE IRRITATION, BLURRED VISION. SKIN: HARMFULL IF ABSORBED THROUGH SKIN. CAN BE ABSORBED IN TOXIC AMOUNTS FROM PROLONGED EXPOSURES. INHALATION: NASAL AND RESPIRATORY IRRITATION, CNS DEPRESSION, NAUSEA, UNCONSCIOUSNESS, ASPHYXIATION. INGESTION: GI IRRITATION, ABDOMINAL PAIN, NAUSEA, VOMITING, DIARRHEA.

Carcinogenicity - NTP: NO Carcinogenicity - IARC: NO

Carcinogenicity - OSHA: NO

Explanation Carcinogenicity: NOT LISTED BY NTP, IARC, OR OSHA.
Signs/Symptoms Of Overexp: EYES: SEVERE IRRITATION. TEARING, REDNESS,
BLURRED VISION. INHALATION: NASAL AND RESPIRATORY IRRITATION, CNS
DEPRESSION, DIZZINESS, DROWSINESS, WEAKNESS, FATIGUE, CONFUSION, NAUSEA,
HEADACHE, VERTIGO. POSSIBLE UNCONSCIOUSNESS, EVEN ASPHYXIATION. INGESTION:
GI IRRITATION, ABDOMINAL PAIN, NAUSEA, VOMITING, DIARRHEA.

Med Cond Aggravated By Exp: NONE KNOWN.

Emergency/First Aid Proc: EYES: FLUSH WITH LARGE AMOUNTS OF WATER. GET MEDICAL ATTENTION. SKIN: REMOVE CONTAMINATED CLOTHING. FLUSH AREA WITH

Report for NIIN: 00D002883

LARGE AMOUNTS OF WATER. INHALATION: MOVE TO FRESH AIR. IF NOT BREATHING '¿(VE CPR. GET MEDICAL ATTENTION. INGESTION: DRINK 1 OR 2 GLASSES OF WATER. DO NOT INDUCE VOMITING. GET MEDICAL ATTENTION.

Precautions for Safe Handling and Use

Steps If Matl Released/Spill: ELIMINATE ALL IGNITION SOURCES. ABSORB WITH INERT MATERIAL SUCH AS CLAY, SOIL OR A COMMERCIALLY AVAILABLE ABSORBENT. SHOVEL RECLAIMED LIQUID/ABSORBENT INTO RECOVERY/SALVAGE DRUM OR TANK TRUCK FOR DISPOSAL. DIKE LARGE SPILLS TO PREVENT RUNOFF.

Neutralizing Agent: NONE SPECIFIED BY MANUFACTURER.

Waste Disposal Method: DISPOSE OF WASTE IN ACCORDANCE WITH APPLICABLE LOCAL, STATE AND FEDERAL REGULATIONS.

Precautions-Handling/Storing: AVOID STORAGE IN HIGH TEMPERATURE AREAS OR NEAR FIRE OR OPEN FLAME. KEEP CONTAINERS CLOSED. AVOID ROUGH HANDLING AND PROTECT FROM PHYSICAL DAMAGE.

Other Precautions: CONTAINERS OF THIS MATERIAL MAY BE HAZARDOUS WHEN EMPTY. DO NOT WELD OR FLAME CUT ON EMPTY DRUMS.

Control Measures

Respiratory Protection: WEAR APPROPRIATE PROPERLY FITTED HALF-MASK/FULL FACEPIECE RESPIRATOR DURING AND AFTER APPLICATION UNLESS AIR MONITORING DEMONSTRATES VAPOR/MIST LEVELS ARE BELOW APPLICABLE LIMITS. FOLLOW RESPIRATOR MANUFACTURES DIRECTIONS FOR USE.

Ventilation: SUFFICIENT VENTILATION TO KEEP AIR CONCENTRATION BELOW PERMISSIBLE EXPOSURE LIMITS. VENT VAPORS WHEN BAKING FINISHES. Protective Gloves: NITRILE OR VITON GLOVES.

Eye Protection: CHEM GOGGLES, SAFETY GLASSES, FACESHIELD.

Other Protective Equipment: NITRILE OR VITON CLOTHING AS NEEDED TO PREVENT SKIN CONTACT.

Work Hygienic Practices: WASH AFTER HANDLING AND BEFORE EATING, DRINKING, SMOKING, OR USING RESTROOM. LAUNDER CONTAMINATED CLOTHING BEFORE REUSE. Suppl. Safety & Health Data: CONTACT LENSES SHOULD NOT BE WORN WHEN WORKING WITH THIS MATERIAL.

DOD Hazardous Materials Information System DoD 6050.5-L AS OF April 1995

FSC: 8010

NIIN: 001818079

Manufacturer's CAGE: 5W216

Part No. Indicator: B

Part Number/Trade Name: THINNER AIRCRAFT COATING

General Information

Item Name: THINNER, AIRCRAFT COATING, POLYURETHANE * Manufacturer's Name: CHEMICAL SPECIALISTS & DEVELOPMENT * Manufacturer's Street: #5 HACKBERRY LANE * Manufacturer's P. O. Box: N/K * Manufacturer's City: CUT & SHOOT * Manufacturer's State: TX * Manufacturer's Country: US * Manufacturer's Zip Code: 77303 * Manufacturer's Emerg Ph #: 800-424-9300 * Manufacturer's Info Ph #: 409-756-1065 * Distributor/Vendor # 1: Distributor/Vendor # 1 Cage: Distributor/Vendor # 2: Distributor/Vendor # 2 Cage: Distributor/Vendor # 3: Distributor/Vendor # 3 Cage: Distributor/Vendor # 4: Distributor/Vendor # 4 Cage: Safety Data Action Code: C Safety Focal Point: G Record No. For Safety Entry: 008 Tot Safety Entries This Stk#: 010 Status: FM * pate MSDS Prepared: 01SEP90 * Safety Data Review Date: 03FEB94 * Supply Item Manager: GSA * MSDS Preparer's Name: DAVID SHIPP * Preparer's Company: CHEMICAL SPECIALISTS & DEVELOPMENT * Preparer's St Or P. O. Box: #5 HACKBERRY LANE * Preparer's City: CUT & SHOOT * Preparer's State: TX * Preparer's Zip Code: 77303 * Other MSDS Number: MSDS Serial Number: BJZSK Specification Number: MIL-T-81772B * Base line used in LCI Spec Type, Grade, Class: TYPE I * Hazard Characteristic Code: F3 * Unit Of Issue: CN Unit Of Issue Container Qty: 5 GAL CAN Type Of Container: METAL Net Unit Weight: N/K

Report for NIIN: 001818079 TRC/State License Number: N/K Het Explosive Weight: N/K Net Propellant Weight-Ammo: N/K Coast Guard Ammunition Code: N/K Ingredients/Identity Information Proprietary: NO Ingredient: METHYL ETHYL KETONE (2-BUTANONE) (MEK) (SARA III) Ingredient Sequence Number: 01 Percent: 30.5 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: EL6475000 CAS Number: 78-93-3 OSHA PEL: 200 PPM/300 STEL ACGIH TLV: 200 PPM/300STEL 9192 Other Recommended Limit: NONE SPECIFIED Proprietary: NO Ingredient: HEXYL ACETATE MIXED ISOMERS Ingredient Sequence Number: 02 Percent: 41.0 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: 1004009HA CAS Number: 88230-35-7 OSHA PEL: N/K ACGIH TLV: N/K Other Recommended Limit: 50 PPM 8 HOUR TWA Proprietary: NO Ingredient: TOLUENE (SARA III) Ingredient Sequence Number: 03 Percent: 10.5 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: XS5250000 CAS Number: 108-88-3 QSHA PEL: 200 PPM/150 STEL ACGIH TLV: 50 PPM; 9293 Other Recommended Limit: NONE SPECIFIED

Proprietary: NO

Ingredient: N-BUTYL ACETATE (SARA III)

Ingredient Sequence Number: 04

Percent: 11.0

Ingredient Action Code: Ingredient Focal Point: G

NIOSH (RTECS) Number: AF7350000

CAS Number: 123-86-4

OSHA PEL: 150 PPM/200 STEL

ACGIH TLV: 150 PPM/200STEL;9192

Report for NIIN: 001818079 Other Recommended Limit: NONE SPECIFIED Proprietary: NO Ingredient: XYLENES (0-,M-,P- ISOMERS) (SARA III) Ingredient Sequence Number: 05 Percent: 7.0 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: ZE2100000 CAS Number: 1330-20-7 OSHA PEL: 100 PPM/150 STEL ACGIH TLV: 100 PPM/150STEL;9192 Other Recommended Limit: NOT SPECIFIED Physical/Chemical Characteristics Appearance And Odor: CLEAR, LITTLE IF ANY COLOR; CHARACTERISTIC ODOR * Boiling Point: 179F,82C * Melting Point: -20F, -29C * Vapor Pressure (MM Hg/70 F): 35.1 MMHG * Vapor Density (Air=1): 3.4 * Specific Gravity: 0.850 * Oecomposition Temperature: N/K * Evaporation Rate And Ref: SLOWER THAN ETHER * Solubility In Water: MODERATE * Percent Volatiles By Volume: 100 * Viscosity: N/K PH: N/K * Radioactivity: N/K Form (Radioactive Matl): N/K Magnetism (Milligauss): N/K Corrosion Rate (IPY): NONE * Autoignition Temperature: N/K Fire and Explosion Hazard Data Flash Point: 20 F/-6.7 C * Flash Point Method: N/K * Lower Explosive Limit: 1.0 * Upper Explosive Limit: N/K * Extinguishing Media: REGULAR FOAM OR CARBON DIOXIDE OR DRY CHEMICAL * Special Fire Fighting Proc: WEAR SELF CONTAINED BREATHING APPARATUS W/ FULL FACEPIECE OPERATED IN POSITIVE PRESS DEMAND MODE. VAPOR MAY TRAVEL TO IGNITE SOURCES DISTANT FROM HANDLING POINT * Unusual Fire And Expl Hazrds: NEVER WELD, USE CUTTING TORCH ON OR NEAR DRUM (EVEN EMPTY) CAN IGNITE EXPLOSIVELY. ALL 5 GAL PAIL & LARGE METAL CONTAINERS GROUND/BOND WHEN TRANSFERING MATERIAL. * Reactivity Data

Stability: YES *

Cond To Avoid (Stability): N/K *

Materials To Avoid: AVOID CONTACT WITH STRONG OXIDIZING AGENTS *

Feport for NIIN: 001818079

Lazardous Decomp Products: MAY FORM TOXIC MATERIALS. CARBON DIOXIDE &

CARBON MONOXIDE, VARIOUS HYDROCARBONS, ETC. *

Fazardous Poly Occur: NO *

Conditions To Avoid (Poly): N/K *

Health Hazard Data

LD50-LC50 Mixture: N/K *

Coute Of Entry - Inhalation: YES *

Route Of Entry - Skin: YES *

Youte Of Entry - Ingestion: NO *

Health Haz Acute And Chronic: OVEREXPOSURE MAY CAUSE CARDIAC ABNORMALITY & LIVER ABNORMALITY. ASPIRATION OF MATERIAL INTO THE LUNGS DUE TO VOMITING CAN CAUSE CHEMICAL PNEUMONITIS WHICH CAN BE FATAL. *

Carcinogenicity - NTP: N/K * Carcinogenicity - IARC: N/K * Carcinogenicity - OSHA: N/K *

Explanation Carcinogenicity: N/K *

Signs/Symptoms Of Overexp: EYES: IRRIT, REDNESS, TEARING. SKIN: PROLONGED/REPEATED CONTACT CAN CAUSE MODERATE IRRIT, DEFATT, DERMATITIS. EXCESSIVE INHALE: NASAL & RESPIRATORY IRRIT, CENTRAL NERVOUS SYSTEM, DIZZINESS, WEAKNESS, FATIGUE, NAUSEA, HEADACHE & POSSIBLE UNCONSCIOUSNESS & EVEN DEATH. SWALLOW: GASTROINTESTINAL IRRIT, NAUSEA, VOMIT & DIARRHE * Med Cond Aggravated By Exp: N/K *

Emergency/First Aid Proc: SKIN: THOROUGHLY WASH AREA W/SOAP & WATER. REMOVE CONTAM CLOTHES. LAUNDER CONTAM CLOTHES BEFORE REUSE. EYES: FLUSH WITH LARGE AMOUNTS OF WATER, LIFTING UPPER & LOWER LIDS, GET MED ATTN. SWALLOWED: DO NOT INDUCE VOMITING, KEEP PERSON WARM, QUIET & GET MEDICAL ATTENTION. BREATH: REMOVE PERSON TO FRESH AIR. IF BREATH IS DIFF ADMIN OXYGEN. BREATH HAS STOPPED GIVE CPR. KEEP PERSON WARM, QUIET, GET MED ATTN *

Precautions for Safe Handling and Use

Steps If Matl Released/Spill: SM:ABSORB LIQ ON PAPER, VERMICULITE, FLOOR ABSORBENT. LG: ELIM ALL IGNITE SOURCES. NO PERSONS W/OUT WEARING PROTECTIVE EQUIP. STOP AT SOURCE. DIKE AREA TO PREVENT SPREAD, PUMP LIQ TO SALVAGE TANK. TAKE UP REST W/SAND, CLAY, ETC. SHOVEL INTO CONTAINERS. * Neutralizing Agent: N/K *

Waste Disposal Method: DISPOSE OF IN ACCORDANCE WITH ALL LOCAL, STATE AND FEDERAL REGULATIONS. PREVENT RUN-OFF TO SEWERS, STREAMS OR OTHER BODIES OF WATER. IF RUN-OFF OCCURS, NOTIFY PROPER AUTHORITIES AS REQUIRED, THAT A SPILL HAS OCCURRED. *

Precautions-Handling/Storing: CONTAINERS MAY BE HAZARDOUS WHEN EMPTIED. SINCE EMPTIES RETAIN PRODUCT RESIDUES (VAPOR, LIQUID, SOLID) ALL HAZARD PRECAUTIONS GIVEN MUST BE OBSERVED. *

Other Precautions: N/K *

Control Measures

Respiratory Protection: NIOSH/MSHA APPROVED AIR SUPPLIED RESPIRATOR IS ADVISED IN ABSENCE OF PROPER ENVIRONMENTAL CONTROL. OSHA REGS ALSO PERMIT OTHER NIOSH/MSHA RESPIRATORS (NEGATIVE PRESSURE TYPE) UNDER SPECIFIED CONDITIONS. SEE YOUR SAFETY EQUIPMENT SUPPLIER. *

Report for NIIN: 001818079

Ventilation: PROVIDE SUFFICIENT MECHANICAL (GENERAL &/OR LOCAL EXHAUST)

VENTILATION *

Protective Gloves: WEAR RESISTANT GLOVES: POLYETHYLENE * Eye Protection: CHEM SPLASH GOGGLES OR SAFETY GLASSES *

Other Protective Equipment: TO PREVENT REPEATED OR PROLONGED SKIN CONTACT,

WEAR IMPERVIOUS CLOTHING & BOOTS *

Work Hygienic Practices: REMOVE CONTAMINATED CLOTHING. LAUNDER

CONTAMINATED CLOTHING BEFORE RE-USE. *

Suppl. Safety & Health Data: N/K *

DEFT PRIMER PART A

Product Code = 44-W-7 Base

Product Description =

MIL-P-53030

Epoxy Polyamid Water

Reducable Primer

In order to dispose of this material properly according to state and federal regulations, the following information is submitted.

Raw Material Used	Percent of Formula by Weight
1. Resin (Solids)	16.03
2. Additives (Solids)	0.10
3. Pigments	
a) Titanium Dioxide	33.96
b) Extenders	27.85
4. Solvents	
a) Butanol	10.80
b) Aeromatic hydrocarbon	11.26
Total	100.0

DEFT PRIMER PART B

Product Code = 44-W-7 Catalyst

Product Description =

MIL-P-53030

Epoxy Polyamid

Catalyst Component

In order to dispose of this material properly according to state and federal regulations, the following information is submitted.

Raw Material Used	Percent of Formula by Weight
1. Resin (Solids)	71.17
2. Additives (Solids)	0.06
3. Solvents	
a) Nitroethane	24.64
b) Aeromatic hydrocarbon	4.13
Total	100.0

DOD Hazardous Materials Information System DoD 6050.5-L AS OF April 1995

FSC: 8010

NIIN: 001605788

Manufacturer's CAGE: 5W216

Part No. Indicator: C

Part Number/Trade Name: THINNER DOPE & LACQUER CELLULOSE NITRATE

General Information

Item Name: THINNER, DOPE & LACQUER, CELLULOSE NITRATE Manufacturer's Name: CHEMICAL SPECIALISTS & DEVELOPMENT

Manufacturer's Street: #5 HACKBERRY LANE

Manufacturer's P. O. Box: N/K Manufacturer's City: CUT & SHOOT

Manufacturer's State: TX Manufacturer's Country: US Manufacturer's Zip Code: 77303

Manufacturer's Emerg Ph #: 800-424-9300 Manufacturer's Info Ph #: 409-756-1065

Distributor/Vendor # 1:

Distributor/Vendor # 1 Cage:

Distributor/Vendor # 2:

Distributor/Vendor # 2 Cage:

Distributor/Vendor # 3:

Distributor/Vendor # 3 Cage:

Distributor/Vendor # 4:

Distributor/Vendor # 4 Cage:

Safety Data Action Code:

Safety Focal Point: G

Record No. For Safety Entry: 008 Tot Safety Entries This Stk#: 017

Status: FE

Date MSDS Prepared: 01SEP90

Safety Data Review Date: 12MAR91

Supply Item Manager: GSA

MSDS Preparer's Name: DAVID SHIPP

Preparer's Company: CHEMICAL SPECIALISTS & DEVELOPMENT

Preparer's St Or P. O. Box: #5 HACKBERRY LANE

Preparer's City: CUT & SHOOT

Preparer's State: TX

Preparer's Zip Code: 77303

Other MSDS Number:

MSDS Serial Number: BJZRZ

used by Ft. Eustis Specification Number: A-A-857B

Spec Type, Grade, Class: N/K Hazard Characteristic Code: N/

Unit Of Issue: CN

Unit Of Issue Container Qty: 5 GAL CAN

Type Of Container: METAL Net Unit Weight: N/K

Report for NIIN: 001605788

NRC/State License Number: N/K

Net Explosive Weight: N/K

Net Propellant Weight-Ammo: N/K Coast Guard Ammunition Code: N/K

Ingredients/Identity Information

Proprietary: NO

Ingredient: ISOPROPYL ALCOHOL (SARA III)

Ingredient Sequence Number: 01

Percent: 18

Ingredient Action Code:
Ingredient Focal Point: G

NIOSH (RTECS) Number: NT8050000

CAS Number: 67-63-0

OSHA PEL: 400 PPM/500 STEL

ACGIH TLV: 400 PPM/500STEL;9192

Other Recommended Limit: NONE SPECIFIED

Proprietary: NO

Ingredient: ISOBUTYL ACETATE (SARA III)

Ingredient Sequence Number: 02

Percent: 31

Ingredient Action Code:
Ingredient Focal Point: G

NIOSH (RTECS) Number: AI4025000

CAS Number: 110-19-0 OSHA PEL: 150 PPM

ACGIH TLV: 150 PPM; 9192

Other Recommended Limit: NONE SPECIFIED

Proprietary: NO

Ingredient: ALIPHATIC PETROLEUM DISTILLATES /(NIOSH 350 MG/CUM-8 HOUR TIME

WEIGHT AVERAGE, 1800 MG/CUM BY 15 MINUTES SAMPLE)

Ingredient Sequence Number: 03

Percent: 16

Ingredient Action Code:
Ingredient Focal Point: G

NIOSH (RTECS) Number: DE3030000

CAS Number: 64742-89-8

OSHA PEL: 300 PPM ACGIH TLV: 300 PPM

Other Recommended Limit: NONE SPECIFIED

Proprietary: NO

Ingredient: METHYL ETHYL KETONE (2-BUTANONE) (MEK) (SARA III)

Ingredient Sequence Number: 04

Percent: 12

Ingredient Action Code: Ingredient Focal Point: G

NIOSH (RTECS) Number: EL6475000

CAS Number: 78-93-3

OSHA PEL: 200 PPM/300 STEL

Report for NIIN: 001605788 ACGIH TLV: 200 PPM/300STEL 9192 Other Recommended Limit: NONE SPECIFIED Proprietary: NO ingredient: TOLUENE (SARA III) Ingredient Sequence Number: 05 Percent: 12 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: XS5250000 CAS Number: 108-88-3 OSHA PEL: 200 PPM/150 STEL ACGIH TLV: 50 PPM; 9293 Other Recommended Limit: NONE SPECIFIED -----Proprietary: NO Ingredient: N-BUTYL ALCOHOL (SARA III) Ingredient Sequence Number: 06 Percent: 11 Ingredient Action Code: Ingredient Focal Point: G NIOSH (RTECS) Number: E01400000 CAS Number: 71-36-3 OSHA PEL: 100 PPM ACGIH TLV: S, C 50 PPM; 9293 Other Recommended Limit: NONE SPECIFIED Physical/Chemical Characteristics Appearance And Odor: CLEAR, LITTLE IF ANY COLOR; CHARACTERISTIC ODOR Boiling Point: 175F,79C Melting Point: -20F, -29C Vapor Pressure (MM Hg/70 F): 70 MMHG Vapor Density (Air=1): 3.0 Specific Gravity: 0.824 Decomposition Temperature: N/K Evaporation Rate And Ref: SLOWER THAN ETHER Solubility In Water: MODERATE Percent Volatiles By Volume: 100 Viscosity: N/K pH: N/K Radioactivity: N/K Form (Radioactive Matl): N/K Magnetism (Milligauss): N/K Corrosion Rate (IPY): NONE

Autoignition Temperature: N/K

Fire and Explosion Hazard Data ______

Flash Point: 10 F/-12.2 C Flash Point Method: N/K Lower Explosive Limit: 1.2 Upper Explosive Limit: N/K Report for NIIN: 001605788

Extinguishing Media: REGULAR FOAM OR CARBON DIOXIDE OR DRY CHEMICAL Special Fire Fighting Proc: WEAR SELF CONTAINED BREATHING APPARATUS W/ FULL FACEPIECE OPERATED IN POSITIVE PRESS DEMAND MODE. VAPOR MAY TRAVEL TO IGNITE SOURCES DISTANT FROM HANDLING POINT

Unusual Fire And Expl Hazrds: NEVER WELD, USE CUTTING TORCH ON OR NEAR DRUM (EVEN EMPTY) CAN IGNITE EXPLOSIVELY. ALL 5 GAL PAIL & LARGE METAL CONTAINERS GROUND/BOND WHEN TRANSFERRING MATERIAL

Reactivity Data

Stability: YES

Cond To Avoid (Stability): N/K

Materials To Avoid: AVOID CONTACT WITH STRONG OXIDIZING AGENTS.

Hazardous Decomp Products: MAY FORM TOXIC MATERIALS. CARBON DIOXIDE &

CARBON MONOXIDE, VARIOUS HYDROCARBONS, ETC.

Hazardous Poly Occur: NO

Conditions To Avoid (Poly): N/K

Health Hazard Data

LD50-LC50 Mixture: N/K

Route Of Entry - Inhalation: YES

Route Of Entry - Skin: YES
Route Of Entry - Ingestion: NO

Health Haz Acute And Chronic: OVEREXPOSURE LIVER ABNORMALITIES &/OR EYE DAMAGE. ASPIRATION OF MATERIAL INTO THE LUNGS DUE TO VOMITING CAN CAUSE CHEMICAL PNEUMONITIS WHICH CAN BE FATAL.

Carcinogenicity - NTP: N/K Carcinogenicity - IARC: N/K Carcinogenicity - OSHA: N/K

Explanation Carcinogenicity: N/K

Signs/Symptoms Of Overexp: EYES: IRRIT, REDNESS, TEARING. SKIN: PROLONGED/REPEATED CONTACT CAN CAUSE MODERATE IRRIT, DEFATT, DERMATITIS.

EXCESSIVE INHALE: NASAL & RESPIRATORY IRRIT, CENTRAL NERVOUS SYSTEM,

DIZZINESS, WEAKNESS, FATIGUE, NAUSEA, HEADACHE & POSSIBLE UNCONSCIOUSNESS & EVEN DEATH. SWALLOW: GASTROINTESTINAL IRRIT, NAUSEA, VOMIT & DIARRHEA

Med Cond Aggravated By Exp: N/K

Emergency/First Aid Proc: SKIN: THOROUGHLY WASH AREA W/SOAP & WATER. REMOVE CONTAM CLOTHES. LAUNDER CONTAM CLOTHES BEFORE REUSE. EYES: FLUSH WITH LARGE AMOUNTS OF WATER, LIFTING UPPER & LOWER LIDS, GET MED ATTN. SWALLOWED: DO NOT INDUCE VOMITING, KEEP PERSON WARM, QUIET & GET MEDICAL ATTENTION. BREATH: REMOVE PERSON TO FRESH AIR. IF BREATH IS DIFF ADMIN OXYGEN. BREATH HAS STOPPED GIVE CPR. KEEP PERSON WARM, QUIET, GET MED ATTN

Precautions for Safe Handling and Use

Steps If Matl Released/Spill: SM:ABSORB LIQ ON PAPER, VERMICULITE, FLOOR

ABSORBENT. LG: ELIM ALL IGNITE SOURCES. NO PERSONS W/OUT WEARING PROTECTIVE EOUIP. STOP AT SOURCE. DIKE AREA TO PREVENT SPREAD, PUMP LIQ TO SALVAGE TANK. TAKE UP REST W/SAND, CLAY, ETC. SHOVEL INTO CONTAINERS.*

Neutralizing Agent: N/K

Waste Disposal Method: DISPOSE OF IN ACCORDANCE WITH ALL LOCAL, STATE AND FEDERAL REGULATIONS. * PREVENT RUN-OFF TO SEWERS, STREAMS OR OTHER BODIES Peport for NIIN: 001605788

OF WATER. IF RUN-OFF OCCURS, NOTIFY PROPER AUTHORITIES AS REQUIRED, THAT A SPILL HAS OCCURRED.

Precautions-Handling/Storing: CONTAINERS MAY BE HAZARDOUS WHEN EMPTIED. JINCE EMPTIES RETAIN PRODUCT RESIDUES (VAPOR, LIQUID, SOLID) ALL HAZARD PRECAUTIONS GIVEN MUST BE OBSERVED.

Other Precautions: N/K

Respiratory Protection: NIOSH/MSHA APPROVED AIR SUPPLIED RESPIRATOR IS ADVISED IN ABSENCE OF PROPER ENVIRONMENTAL CONTROL. OSHA REGS ALSO PERMIT OTHER NIOSH/MSHA RESPIRATORS (NEGATIVE PRESSURE TYPE) UNDER SPECIFIED CONDITIONS. SEE YOUR SAFETY EQUIPMENT SUPPLIER.

Ventilation: PROVIDE SUFFICIENT MECHANICAL (GENERAL &/OR LOCAL EXHAUST)
VENTILATION

Protective Gloves: NITRILE RUBBER, POLYETHYLENE

Eye Protection: CHEM SPLASH GOGGLES OR SAFETY GLASSES

Other Protective Equipment: TO PREVENT REPEATED OR PROLONGED SKIN CONTACT, WEAR IMPERVIOUS CLOTHING & BOOTS

Work Hygienic Practices: REMOVE CONTAMINATED CLOTHING. LAUNDER

CONTAMINATED CLOTHING BEFORE RE-USE.

Suppl. Safety & Health Data: N/K

Baseline CARC System Life Cycle Inventory Summary Results

Notes: Notes: Notes: Input

Inventory numbers for individual CARC System components do not include emissions and energy or materials consumption for electric power generation. The "Baseline CARC System" numbers do include electric power generation data.

	And act of bearing	This to the term of the term o	Things	200) or:10000	
Units	= ō	Quantity Quantity	Quantity	Quantity	Quantity (Ouantity	Daseine C Units	Baseline CARC System Units Quantity
.t. B .t. B	· .	00		007		1128		DETA
ib/ft^2		0.05145	7.089 5 0.01152		14.59333 0.029187	9.40752 0.004704		ILE
,							ft^2	D INV
Resource and Energy Consumption								/EN
BTU/Ib			ιñ		5176.439	12217.84	BTU/FU	
BI U/ID		177054.9			83911.35	293983.5	BTU/FU	14348909
BTU/Ib		6454.894			2511.59	2840.313	BTU/FU	588191.3
q/q		486.9277	7 329.4671		352.796	967.3135	Ib/FU	43695.19
ql/qı		33.01711	1 27.95911		17.41074	47.54899	Ib/FU	2752.657
ql/qı		0.078344	1 0.156721		0.279948	0.304434	Ib/FU	15.43913
ql/qı		1.234477	7 0.293007		0.161095		Ib/FU	71.59119
Ib/lb		0.0195	10				Ib/FU	1.003275
qj/qi		0.0885	10				Ib/FU	4.553325
ql/qı		0.26	"		9600'0		Ib/FU	13.6572
ql/ql			~		0.003184		Ib/FU	1.281821
ql/ql			~				Ib/FU	0.396294
q/q		0.043719	•				Ib/FU	2.249343
q/q		0.504494	_		0.486484	0.622545	Ib/FU	43.08366
0/Q		0.000926	.				Ib/FU	0.047642
ql/ql			C ¹		0.114823		Ib/FU	6.041725
1D/ID		0.000044					Ib/FU	0.002242
ql/ql		0.00033	0		0	0	Ib/FU	0.016979
qI/qI					0		Ib/FU	0
qI/qI					0.39417	0.362135	Ib/FU	13.20812
ql/ql					0.009997		Ib/FU	0.291794
ql/ql					0.07168		Ib/FU	2.092124

8.347482 4.1E-09 4.2E-07 4.9E-06 0.006874 2.350849 6.060934 76.06144 1.072732 0.32182 0.053637 39117.03 0.209911	4.653024 83.96435 1.386005 6.006696 21.58427 15.01133 0.203287	0.129614 0.002209 0.056203 0.026791 0.021642 0.197299 6.099323	0.08855 0.002808 0.006726 0.576658 0.058732 0.327885 0.008342 6.2E-06 0.000876
16/FU 16/FU 16/FU 16/FU 16/FU 16/FU 16/FU 16/FU 16/FU 16/FU	0.4/81 0.4/81 0.4/81 0.4/81 0.4/81	18/FU 18/FU 18/FU 18/FU 18/FU	16/FU 16/FU 16/FU 16/FU 16/FU 16/FU
	0.01517 0.004981 0.110646 0.077079 0.000476	0.000251 0.000064 0.000064 0.001 0.001 0.034568 9.8E-07	0 0.009633 0 0.000144
0.286 0.080544 0.207659 2.606004 0.036754 0.011026 0.001838 1340.221	0.02184 0.001525 0.058562 0.058768	0.000065 0.000017 0.000018 0.000153 0.01309 5.9E-06	0.000077 0.007967 0.000053 2.1E-07 0.00096 0.000096
	0.008917 0.005423 0.010748 0.073978 0.008641	9.7E-06 0.000835 0.020305	0.003166 0.000033 0.005098 0.028462 0.000085
	0.011166 0.108338 0.006263 0.234812	0.000243 0.000025 0.000242 0.000242 0.103415 0.001298	0.000076 3.6E-06 0.000131 0.005808 0 0
41/41 41/41 41/41 41/41 41/41	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		01/01 01/01
Zinc ore Uranium Distillate Fuel Oil Residual Fuel Oil Hydropotential Ilmenite Rumenite Air Coke Sodium hydroxide SiAI Starch Soda ash	Air Emissions Air Emissions CO PM SOx VOC Benzene	Ethylbenzene Xylene Curnene Phenol Heavy Aromatics NOx PM10	Acetaidenyde Ethylene HCN Chlorine MEK Isobutyraldehyde Acetone Ammonia Fluorine Lead

	NO SA	484	c		282000	0.002650	112/41	ACC2000
		5.5	•	.	0.000	0.002039		0.025264
	Isopropyi alconor	0)/0		> (> 0	> (DT/01:	0
	MIAK	12/ID		0	0	0	IB/FU	0.524453
	Aromatic hydrocarbons	tp/lb	0.000438	0	0	0.000084	Ib/FU	0.022925
	Butyl acetate	tb/tb	0.000442	0.001316	0.003828	0	Ib/FU	0.1496
	Naphtha	dl/dl	0.001281	0	0	0	Ib/FU	0.065909
	Propyl acetate	lb/lb	0	0	0	0	Ib/FU	0
	MPK	lb/lb	0	0	0	0	Ib/FU	0
•	Butyl cellosolve	lb/lb	0	0	0	0	Ib/FU	0
	Hexyl acetate	dl/dl	0	0.00489	0	0	Ib/FU	0.056332
	Ç02	tb/lb	3.523738	2.983926	2.08293	5.074648	Ib/FU	300,3368
	Hexane	dl/dl		0.000676	0.000421	0.00115	Ib/FU	0.066568
	Heptane	th/th	0.001028	0.000871	0.000542	0.001481	Ib/FU	0.08571
	Octane	dl/dl	0.000687	0.000582	0.000363	0.00099	Ib/FU	0.057316
	C-7 cycloparaffins	lb/lb	0.000145	0.000123	0.000076	0.000209	Ib/FU	0.012075
	C-8 cycloparaffins	lb/lb	0.000053	0.000045	0.000028	0.000076	Ib/FU	0.004414
	Pentane	dl/dl	0.000499	0.000422	0.000263	0.000718	Ib/FU	0.041566
	Methane	dl/dl	0.003311	0.002804	0.001746	0.004769	Ib/FU	0.276078
	Ethane	tb/lb	0.00057	0.000482	0.0003	0.00082	Ib/FU	0.047482
	Propane	dl/dl	0.000893	0.000757	0.000471	0.001287	Ib/FU	0.074485
C	n-Butane	dl/dl	0.000708	0.000599	0.000373	0.001019	Ib/FU	0.05901
-3	Iso-Butane	tb/lb	0.000035	0.00003	0.000019	0.000051	Ib/FU	0.002943
	Formaldehyde	tb/lb		0.000213	0.000132	0.000362	Ib/FU	0.020946
	Hydrocarbons	tb/lb	0.039831	0.033729	0.021004	0.057362	Ib/FU	3.320748
	Aldehydes	tb/lb	0.000232	0.000196	0.000122	0.000334	Ib/FU	0.019324
	Organic Acids	lb/lb	0.000295	0.00025	0.000156	0.000425	Ib/FU	0.024594
	Kerosene						Ib/FU	4.4E-09
	Carbon tetrachloride	Ib/Ib				0.000599	Ib/FU	0.002818
	Chloroform	di/di				0.000284	Ib/FU	0.001337
	Ethyl chloride	lb/lb				0.000637	Ib/FU	0.002999
	Ethylene dichloride	tb/tb				0.001647	Ib/FU	0.007745
	Trichtoroethane	lb/lb				0.000487	Ib/FU	0.00229
	Vinyl chloride	dl/dl				0.000303	Ib/FU	0.001428
	Hydrochloric acid	dl/dl			0.000041	0.000029	Ib/FU	0.00132
	Sulfuric acid	d/di	0			0	Ib/FU	0
	Propylene	lb/lb	0			0	Ib/FU	0
	1,2-butylene					0	Ib/FU	0
	2-nitropropane					0	Ib/FU	0
	Acetonitrile					0	Ib/FU	0
	Bromochlorodifluoromethane					0	Ib/FU	0
	Bromotriffuoromethane					0	Ib/FU	0

Dichlorodifluoromethane Methanol					00	IB/FU IB/FU	00
Naphthalene Nitric acid					00	Ib/FU Ib/FU	00
Butyl alcohol		0	0	0.001081	0.000574	Ib/FU	0.03424
Nitroethane		0	0	0	0	Ib/FU	0
Aliphatic hydrocarbons		0	0	0	0	Ib/FU	0
Wastewater Emissions							
Wastewater	lb/lb	34.85286	34.39827	24.87046	89.14841	Ib/FU	3334.696
WW Reinj'd	tb/lb	1.939361	1.642264	1.022673	2.792936	Ib/FU	161.6858
WW Discharg.	dl/di	0.857607	0.726227	0.452237	1.235067	Ib/FU	71.49923
WW Injected	ql/ql	0.281159	0.238087	0.148262	0.404906	Ib/FU	23.44037
Arsenic	tb/lb	3.5E-07	3.0E-07	1.9E-07	5.1E-07	Ib/FU	0.00003
Benzene	tb/lb	8.6E-06	7.2E-06	4.5E-06	0.000012	Ib/FU	0.000713
Boron	qI/qI	0.000182	0.000154	0.000096	0.000262	Ib/FU	0.015167
Sodium	ql/ql	0.172821	0.146346	0.091133	0.248885	Ib/FU	14.40818
Chloride	1 / 1	0.136437	0.115536	0.071947	0.196488	Ib/FU	11.37488
Mobile ions	q/q	0.418408	0.354311	0.220637	0.602563	Ib/FU	34.88296
Oil and Grease	q/q	0.00426	0.003607	0.002246	0.006134	Ib/FU	0.355131
Cadminm	ql/ql	2.9E-06	2.5E-06	0.000164	4.2E-06	Ib/FU	0.004971
Chromium	lp/lp	2.6E-07	2.2E-07	0.000018	3.8E-07	Ib/FU	0.000554
Mercury	q/q	6.6E-08	5.6E-08	5.3E-08	9.6E-08	Ib/FU	6.1E-06
Thallium	Q//Q	6.3E-08	5.3E-08	3.3E-08	9.0E-08	Ib/FU	5.2E-06
Sulfuric Acid						Ib/FU	9.4E-08
Iron				0.000263		Ib/FU	8.1E-06
Dissolved Solids						Ib/FU	6.8E-07
Suspended Solids						Ib/FU	2.3E-09
COD						Ib/FU	4.5E-09
Phenol						Ib/FU	3.8E-10
Sulfide						Ib/FU	3.8E-10
ō						Ib/FU	7.6E-10
Acid						Ib/FU	7.6E-10
Metals						Ib/FU	3.8E-10
800						Ib/FU	1.4E-09
Vanadium				4.5E-06		Ib/FU	0.00013
ZIUC				1.4E-06		tb/FU	0.000041
Copper				1.4E-06		Ib/FU	0.000041
Aluminum	-			0.00002		Ib/FU	0.000591
litanium dioxide				0.004455		Ib/FU	0.130028
read				0.000061		Ib/FU	0.001773

Alternative Primer CARC System Life Cycle Inventory Summary Results

Notes:

Inventory numbers for Individual CARC System components do not include emissions and energy or materials consumption for electric power generation. The "Baseline CARC System" numbers do include electric power generation data.

LCI Components	Units	Thinned TC Top Quantity Qua	Coat	Thinner Quantity	Primer Quantity	Prim. Pt. A Quantity	Prim. Pt. B Quantity	Baseline C	Baseline CARC System Units
Usage Rate Volumetric Mixing Ratio	ft^2/gal. CARC:thin.		7		Au Au				
Volumetric Mixing Katio Specific Gravity	7. 7. 1.			P)		The second secon	1 gr 23 gr 2 gr 2 gr 2 gr 2 gr 2 gr 2 gr 2 gr 2		
Unit Weight Usage Rate	lb/gal. lb/ft^2		0.05145	7.089		14.25706	9.411273	0.004708	
Functional Unit (FU)								ff^2	And Signature of the Si
Resource and Energy Consumption	mption								
Electricity	BTU/Ib		10813.64	5881.702		2849.335	12368.93	BTU/FU	763573.7
Natural gas	BTU/Ib		177054.9	115627		44822.11	199001.2	BTU/FU	12731376
Steam	BTU/Ib		6454.894	3576.371		696.0441	3090.297	BTU/FU	535913.5
Water	<u>p</u> /p		486.9277	329.4671		248.7911	907.1772	Ib/FU	40210.77
Crude oil	D/ID		33.01711	27.95911		8.404271	37.31328	Ib/FU	2436.041
Oxygen	<u>a</u> /a		0.078344	0.156721		0.214204	0.286878	Ib/FU	13.19986
Refinery gases	D/ID		1.234477	0.293007		0		Ib/FU	66.88931
Cobalt oxide	q/q		0.0195					Ib/FU	1.003275
Chrome oxide	D/Ib		0.0885					Ib/FU	4.553325
Silica	D/D		0.26			0		Ib/FU	13.377
Iron ore	q/q		0.023108			0.00534		Ib/FU	1.341152
Magnetite	מן/ם :		0.007703					DP/di	0.396294
Magnesium ore	<u> </u>		0.043719					Ib/FU	2.249343
Sodium Chloride	<u>ا</u> و/او		0.504494			0.35447	1.573775	Ib/FU	43.46918
Phosphoric acid	<u>a/a</u>		0.000928					Ib/FU	0.047642
Sulfuric acid	1 2/10		0.052292			0.192562		Ib/FU	8.181103
Suitur dioxide	<u>a/a</u>		0.000044					IBVFU	0.002242
Hydrocarbons C8 to C10	<u>0/0</u>		0.00033	0		0.002477	0.000909	Ib/FU	0.091889
Proprietary Primer Ingredients			ŗ			0		IB/FU	0
Chlorine	1					0.332521	1.120572	Ib/FU	14.75451
Coa	<u>0/0</u>					0		Ib/FU	0.000016
Phosphate ore	D/ID					0		ID/FU	0

	0.792424 5.958093 21.20602 13.89406 0.201201 0.11377	0.042969 0.022511 0.020629 0.197299 5.877492 0.310286 0.04046 0.000559	0.585689 0.020379 0.327885 0.007429 0.000887 9.1E-11
A PARA DEPARA DE LA PERENTE DE	444444 5555555555555555555555555555555	9	
	0.01018 0.001296 0.113662 0.00342 0.000126 0.0000126	0.000904 0.000904 0.000904 0.027098 0 0.000015	0.000123 0.000123
0.135076 0.348251 4.370365 0.061637 0.018491 0.003082 2247.6	0.002361 0.000465 0.047286 0.01981 0.000029	0.00132 0.000204 0.000138 0.00685 0	0.00581
	0.008917 0.005423 0.010748 0.073978 0.008641 0.008641	9.7E-06 0.020305 0.0003168 0.000033	0.001769 0.028462 0.000085
	0.011166 0.108338 0.008263 0.234812 0.001902	0.000164 0.000242 0.000242 0.003835 0.103415 0.001298 3.6E-06 0.000131	0.0001
Zinc ore Uranium Distillate Fuel Oil Residual Fuel Oil Hydropotential Ilmenite Rumenite Air Coke Sodium hydroxide SiAi Fuel Starch Soda ash	Air Emissions CO PM SOx VOC Benzene Toluene Ethylbenzene	Xylene Cumene Phenol Heavy Aromatics NOx PM10 Acetaldehyde Ethylene HCN	Chlorine MEK Isobutyraldehyde Acetone Ammonia Fluorine Lead

X 10 10 10 10 10 10 10 10 10 10 10 10 10	TAID TAID	0	0	0	0	Ib/FU	0
lenomyl elcohol	qlyql	0	0	0	0	EVFU	0
MAK	al/di	0.00138	0	0	0	ID/FU	0.071022
Ammatic hydrocarbons	a Pala	0	0	0.001315	0.000121	IB/FU	0.038055
But a parata	pyp	0	0	0	0	Ib/FU	0
Nachtha	d/di	0	0	0	0	Ib/FU	0
Provi acetate	qVq	0	0	0	0	IB/FI	0
MDK	d/di	0	0	0	0	IB/FIC	0
Butvi cellosolve	q/q	0	0	0	0	ID/FU	0
Hery scatte	[Alb	0	0	0	0	ID/FU	0
	q/ql	3.523738	2.983926	1.273899	3.982246	I b/FU	270.7341
Hexana	qVql	0.000798	0.000678	0.000203	0.000902	D-F/J	0.058911
Herana	al/di	0.001028	0.000871	0.000262	0.001162	ID/FU	0.075852
Cataba	ta/ta	0.000687	0.000582	0.000175	0.000777	Ib/FU	0.050724
C.7 cycloparaffins	d/di	0.000145	0.000123	0.000037	0.000164	EVFU	0.010686
		0.000053	0.000045	0.000013	900000	D-T/di	0.003907
Dentane		0.000499	0.000422	0.000127	0.000563	Ib/FU	0.036785
Methone	th/th	0.003311	0.002804	0.000843	0.003742	Ib/FU	0.244323
		0.00057	0.000482	0.000145	0.000844	Ib/FU	0.04202
	<u> </u>	0.000893	0.000757	0.000227	0.00101	Ib/FU	0.065917
-Buttane		0.000708	0.000599	0.00018	0.0008	Ib/FU	0.052223
Iso-Butana		0.000035	0.00003	9.0E-08	0.00004	Ib/FU	0.002604
Formaldehyde	g/q	0.000251	0.000213	0.000064	0.00036	ID/FU	0.018896
Hydrocarbons	q/q	0.039831	0.033729	0.010139	0.045014	Ib/FU	2.93879
Aldehydes	ql/ql	0.000232	0.000196	0.000059	0.000262	Ib/FU	0.017101
Organic Acids	d/di	0.000295	0.00025	0.000075	0.000333	Ib/FU	0.021765
Kerosene						Ib/FU	4.1E-09
Carbon tetrachloride	Ib/Ib	1			0	INFU	0
Chloroform	d/di	•			0	D-T/di	0
Ethyl chloride	q/q				0	Ib/FU	0
Ethylene dichloride	lb/lb				0	Ib/FU	0
Trichloroethane	Ib/Ib				0	IB/FU	0
Vinvi chloride	fb/lb				0	INFU	0
Hydrochloric acid	Ib/Ib			0.000068	0	INFU.	0.001937
Sulfuric acid	lb/lb	0			0	IB/FU	0
Propviene	Ib/Ib	0			0	Ib/FU	0
1.2-butylene					1.5E-07	ID/FU	7.0E-07
2-nitropropane					0.000129	Ib/FU	0.000608
Acetonitrile					5.1E-06	Ib/FU	0.000024
Bromochlorodifluoromethane					4.7E-07	B/FU	2.2E-08
Bromotrifluoromethane					1.8E-06	IB/FU	8.3E-06

12E-06 IDFU 1975 12E-06 IDFU 1975 197	Dichlorodifluoromethane Methanol					0.000234 4.0E-06 0.000137	18/FC UF/VE UF/VE	0.001101 0.000019 0.000643
Control Cont	Nitric acid		•	•		1.2E-06	B/FU	5.5E-06
1,000 1,00	Butyl alcohol		O C	.	0.001463	0 000822	ior UFAI	0.041712
water Emissions IAD 34.82288 34.39827 14.92256 66.20852 IBFU 1 ein/d Ib/D 0.57707 0.72827 0.439851 2.18171 IBFU 1 icchang Ib/D 0.57707 0.72827 0.71829 0.989199 Ib/FU 2 icchang Ib/D 0.05707 0.72827 0.71829 0.989199 Ib/FU 2 icchang Ib/D 0.050715 0.050715 0.000154 0.000164 0.000169 0.000164 0.000169	Aliphatic hydrocarbons		• •	. 0		0	INFU	0
Main	Wastewater Emissions							
Statistical color Stat	Wastewater	g/q	34.85286	34.39827	14.92558	66.26652	Ib/FU	2926.862
Section DND 0.857907 0.72827 0.218280 0.869199 DIFU DIPU DND 0.281199 0.238087 0.218128 0.238087 0.218128 0.238087 0.218128 0.238087 0.218128 0.238087 0.218128 0.238087 0.218128 0.238087 0.218128 0.238087 0.218128 0.238087 0.218128 DIPU	WW Reini'd	a V q	1.939361	1.642264	0.493651	2.19171	Ib/FU	143.0884
Dirich D	WW Dischard.	a Va	0.857607	0.726227	0.218298	0.969199	Ib/FU	63.27526
Decide D	WW Injected	ava ava	0.281159	0.238087	0.071567	0.317743	Ib/FU	20.74422
ne lb/lb 8 6E-06 7.2E-06 2.2E-06 9.7E-06 lb/lb lb/lb 0.000184 0.000460 0.000206 lb/lb 0.0000206 lb/lb 0.000206	Arsenic	D/D	3.5E-07	3.0E-07	9.0E-08	4.0E-07	Ib/FU	0.000026
In the contest of co	Benzene	D/D	8.6E-06	7.2E-08	2.2E-06	9.7E-06	Ib/FU	0.000631
Purple P	Boron	₽/₽	0.000182	0.000154	0.000046	0.000208	Ib/FU	0.013422
ride Ib/lb 0.136437 0.115536 0.034729 0.154191 Ib/FU 1 de lons Ib/lb 0.418406 0.354311 0.106503 0.472851 Ib/FU 3 de lons Ib/lb 0.04426 0.00307 0.001034 3.05-07 Ib/FU 0 mium Ib/lb 2.6E-06 2.5E-06 0.000272 3.3E-08 Ib/FU 0 uny Ib/lb 6.0E-06 5.6E-08 4.7E-08 7.5E-08 Ib/FU 0 uny Ib/lb 6.3E-08 5.3E-08 7.1E-08 7.1E-08 Ib/FU 0 loved Solids Acid Acid Ib/FU 0	Sodium	15/d	0.172821	0.146346	0.04399	0.195308	Ib/FU	12.75092
Part	Chloride	1D/Ib	0.136437	0.115538	0.034729	0.154191	Ib/FU	10.06652
rd Grease Iprib 0.00428 0.003807 0.001084 0.004414 IbFU 0 nium IbVIb 2.9E-08 2.5E-06 0.000272 3.3E-08 IbFU 0 uny IbVIb 6.6E-08 5.3E-08 4.7E-08 7.5E-08 IbFU 0 uny IbVIb 6.3E-08 5.3E-08 1.6E-08 7.1E-08 IbFU 0 lium lord Acid A.7E-08 7.1E-08 IbFU 0 live S.3E-08 5.3E-08 7.1E-08 IbFU 0 live Acid A.7E-08 7.1E-08 IbFU 0 live Acid A.7E-08 7.1E-08 IbFU 0 line Acid Acid IbFU 0 0 0 line Acid Acid Acid IbFU 0 0 line Acid Acid Acid IbFU 0 0 0 line Acid	Mobile ions	P /P	0.418408	0.354311	0.106503	0.472851	Ib/FU	30.87066
nium lb/lb 2.9E-06 2.5E-07 0.000272 3.3E-06 lb/FU 0.000272 0.000274	Oil and Grease	₽/Q	0.00428	0.003607	0.001084	0.004814	Ib/FU	0.314283
mlum lb/lb 2.6E-07 2.2E-07 0.000031 3.0E-07 lb/FU 0.000031 3.0E-07 lb/FU lb/FU 0.000431 3.0E-07 lb/FU lb/F	Cadmium	₽/₽	2.9E-06	2.5E-06	0.000272	3.3E-06	Ib/FU	0.007961
uny Ib/Ib 6.6E-08 5.6E-08 4.7E-08 7.5E-08 Ib/FU inm Ib/Ib 6.3E-08 5.3E-08 7.1E-08 7.1E-08 Ib/FU inm Ib/Ib 0.000441 1.6E-08 7.1E-08 Ib/FU Ib/FU inm Ib/FU Ib/FU Ib/FU Ib/FU Ib/FU Ib/FU inm Ib/FU 2.4E-06 Ib/FU Ib/FU Ib/FU Ib/FU Ib/FU inm dinm 0.000034 Ib/FU Ib/F	Chromium	D/D	2.6E-07	2.2E-07	0.000031	3.0E-07	Ib/FU	0.000891
lum dioxide (5.3E-08 5.3E-08 7.1E-08 (bFU bbFU bbFU bbFU bbFU bbFU bbFU bbFU	Mercury	a Vđ	8.6E-08	5.6E-08	4.7E-08	7.5E-08	Ib/FU	5.8E-06
Ibre	Thallium	a Va	6.3E-08	5.3E-08	1.6E-08	7.1E-08	Ib/FU	4.6E-06
blyed Solids ended Solids ended Solids ended Solids bridge	Sulfuric Acid						Ib/FU	8.6E-08
lod Solids by Property of the	Iron				0.000441		Ib/FU	7.4E-06
los	Dissolved Solids						Ib/FU	6.3E-07
los (b/FU brown) de brown and a control of the con	Suspended Solids						Ib/FU	2.1E-09
Ib/FU Ib/F	COD						Ib/FU	4.1E-09
IbFU	Phenol						Ib/FU	3.5E-10
Ib/FU Ib/F	Sulfide						Ib/FU	3.5E-10
Ib/FU Ib/F	ō						Ib/FU	6.9E-10
Ib/FU	Acid						Ib/FU	6.9E-10
Ib/FU 7.5E-06 Ib/FU 2.4E-06 Ib/FU 1b/FU 2.4E-06 Ib/FU 1b/FU	Metals						Ib/FU	3.5E-10
7.5E-06 Ib/FU 2.4E-06 Ib/FU 2.4E-06 Ib/FU inum inum ium dioxide 0.000102 Ib/FU Ib/FU Ib/FU Ib/FU Ib/FU Ib/FU	BOD						Ib/FU	1.3E-09
2.4E-06 Ib/FU 2.4E-06 Ib/FU inum inum inum ium dioxide 0.000102 Ib/FU Ib/FU Ib/FU Ib/FU Ib/FU Ib/FU	Vanadium				7.5E-06		Ib/FU	0.000213
2.4E-06 lb/FU 0.000034 lb/FU lb/FU 0.0007471 lb/FU lb/FU 0.000102 lb/FU lb/FU lb/FU	Zinc				2.4E-06		Ib/FU	0.000068
0.000034 Ib/FU Ib/FU Ib/FU 0.000102 Ib/FU	Copper				2.4E-06		Ib/FU	0.000068
0.007471 Ib/FU Ib/	Aluminum				0.000034		Ib/FU	0.000968
0.000102 Ib/FU	Titanium dioxide				0.007471		Ib/FU	0.213034
	Lead				0.000102		Ib/FU	0.002905

Magnesium Chlorine Ammonia Hydmoen cyenide				6.8E-09	0.025758 3.7E-07	IBYFU BYFU USPU	1.9E-07 0.1212 1.7E-06
Solid Wastes						9	1.25-01
Solid Wastes	qVq	0.27641	0.000753	0.442818	1.513695	Ib/FU	61.96762
Hazardous Wastes	I D/ID	0.000132		0.03396	0	Ib/FU	79.46515
Fly Ash						D/FU	1.9E-09
Bottom Ash						Ib/FU	5.2E-10
Slag						ID/FU	2.0E-10
FGD Solids						Ib/FU	7.2E-10
U238						Ib/FU	4.9E-09
U236						Ib/FU	3.3E-12
U235						Ib/FU	4.2E-11
Pu (fissile)						Ib/FU	3.4E-11
Pu (nonfissile)						ID/FU	1.3E-11
Fission Products						Ib/FU	2.4E-11
2-ntropropane					0.001717	Ib/FU	0.008078
Acetaldehyde					0.002214	£λFU	0.010417
Acetone					0.001188	Ib/FU	0.00559
Acetonitrile					0.000969	Ib/FU	0.004561
Formaldehyde					0.000017	Ib/FU	0.00008
Methanol					0.001951	Ib/FU	0.009182
Naphathalene					1.4E-06	IB/FU	6.6E-06
Nitric acid					0.000137	Ib/FU	0.000643
Ammonia					0.00003	Ib/FU	0.000142
Hydrogen cyanide					1.4E-08	Ib/FU	6.6E-06

Table C-3

Alternative Gun CARC System Life Cycle Inventory Summary Results

= User Input Notes: Inventory numbers for individual CARC System components do not include emissions and energy or materials consumption for electric power generation. The "Baseline CARC System" numbers do include electric power generation data.

LC! Components	Units	Thinned TC Top	Coat	Thinner	Primer Quantity	Prim. Pt. A Prim. Pt. B Quantity Quantity	Prim. Pt. B Quantity	Baseline C Units	Baseline CARC System Units Quantity
Usage Rate Volumetric Mixing Ratio Volumetric Mixing Ratio	ft^2/gal. CARC:thin. Pt. A:Pt. B		-		#1 #4 #4# 				
Specific Gravity	leo/di			11. 11. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.		14 50333	0.40752		
Usage Rate	ID/ff^2		0.037147	0.009038		0.021073	0.003396		
Functional Unit (FU)								f^2	11/1/1
Resource and Energy Consumption	ımption								
Electricity	BTU/Ib		10813.64	5881.702		5176.439	12217.84	BTU/FU	605433
Natural gas	BTU/Ib		177054.9	115827		83911.35	293983.5	BTU/FU	10464120
Steam	BTU/Ib		6454.894	3576.371		2511.59	2840.313	BTU/FU	462896.2
Water	d/di		486.9277	329.4671		352.796	967.3135	Ib/FU	31785.09
Crude oil	Ib/Ib		33.01711	27.95911		17.41074	47.54899	Ib/FU	2007.554
Oxygen	1 /1p		0.078344	0.156721		0.279948	0.304434	tb/FU	11.25989
Refinery gases	lb/lb		1.234477	0.293007		0.161095		Ib/FU	51.90009
Cobalt oxide	lb/lb		0.0195					ID/FU	0.724367
Chrome oxide	ID/ID		0.0885					Ib/FU	3.28751
Silica	lb/lb		0.28			0.0096		D-FU	9.860521
Iron ore	tb/lb		0.023108			0.003184		D-FC	0.925477
Magnetite	lb/lb		0.007703					D/AI	0.286125
Magnesium ore	<u>1</u> 2/10		0.043719					ID/FU	1.62403
Sodium Chloride	a <u>Va</u>		0.504494			0.486484	0.622545	ID/FU	31.10627
Phosphoric acid			0.000926					Ib/FU	0.034398
Sulfuric acid	<u>a/a</u>		0.052292			0.114823		Ib/FU	4.362129
Sulfur dioxide	1 /10		0.000044					Ib/FU	0.001619
Hydrocarbons C8 to C10	₽ ⁄₽		0.00033	0		0	0	D/FU	0.012259
Proprietary Primer Ingredients	<u>a/a</u>					0		Ib/FU	0
Chlorine	q/q					0.39417	0.362135	Ib/FU	9.536152
Coal	1 2/10					0.009997		Ib/FU	0.210675
Phosphate ore	12/1 2					0.07168		Ib/FU	1.510513

6.026878 3.0E-09 3.1E-07 3.5E-06	1.697312 4.375992 54.91632 0.774512 0.232354 0.038726 28242.48 0.209911 2.623886 4.653024 83.96435	1.007117 4.424783 20.88633 10.89153 0.152999 0.098296 0.015625 0.015625 0.14245 4.418342 0.066215 0.002051 0.004856 0.016345 0.039595 0.039595 0.039595 0.006084 4.5E-06 0.000632
IBYFU IBYFU IBYFU MASHU	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
		0.01517 0.004981 0.110646 0.077079 0.000251 0.000064 0.0001 0.001 0.001 0.001 0.009633 0.000144
0.286	0.080544 0.207659 2.806004 0.038754 0.011028 0.001838 1340.221	0.02184 0.001525 0.058562 0.058768 0.0000125 0.000017 0.000018 0.000153 0.00165 0.00165 0.000053 2.1E-07 0.000098
		0.008917 0.005423 0.010748 0.008641 0.008608 9.7E-08 0.000657 0.00033 0.004361 0.028462 0.000085
		0.011166 0.108338 0.006263 0.234812 0.001902 0.000242 0.000242 0.000242 0.000242 0.000242 0.000242 0.000242 0.000242 0.000242 0.000242 0.0001298 0.000131 0.000131
q/q		
Zinc ore Uranium Distillate Fuel Oil Residual Fuel Oil Hydrocotential	Ilmenite Rumenite Air Coke Sodium hydroxide SiAl Fuel Starch Soda ash Limestone Bauxite	Air Emissions CO PM SOX VOC Benzene Toluéne Ethylbenzene Xylene Cumene Phenol Heavy Aromatics NOX PM10 Acetaidehyde Ethylene HCN Chlorine MEK Isobutyraldehyde Acetone Ammonia Fluorine Lead

MIBK	lb/lb	0	0	0.000309	0.002289	IMFU	0.014318
isopropyl aicohol	D/D	0	0	C	0	INFI I	
MIAK	d/di	0.007743	0	0	0	Ib/FU	0.287645
Aromatic hydrocarbons	fb/fb	0.000316	0	0	0.000084	Ib/FU	0.01203
Butyl acetate	tb/lb	0.000319	0.001032	0.002764	0	Ib/FU	0.079413
Naphtha	q/qi	0.000925	0	0	0	INFU	0.034357
Propyl acetate	tb/tb	0	0	0	0	Ib/FU	0
MPK	al/al	0	0	0	0	Ib/FU	0
Butyl cellosolve	Ib/Ib	0	0	0	0	Ib/FU	0
Hexyl acetate	tb/lb	0	0.003836	0	0	Ib/FU	0.034673
C02	ql/ql	3.523738	2.983926	2.08293	5.074648	Ib/FU	218.9921
Hexane	q/qi	0.000798	0.000676	0.000421	0.00115	Ib/FU	0.048549
Heptane	Ib/Ib	0.001028	0.000871	0.000542	0.001481	Ib/FU	0.06251
Octane	lb/lb	0.000687	0.000582	0.000363	0.00099	INFU	0.041802
C-7 cycloparaffins	lb/lb	0.000145	0.000123	0.000078	0.000209	D-M-D	0.008807
C-8 cycloparaffins	lb/lb	0.000053	0.000045	0.000028	0.000076	Ib/FU	0.00322
Pentane	15/16	0.000499	0.000422	0.000263	0.000718	Ib/FU	0.030315
Methane	lb/lb	0.003311	0.002804	0.001746	0.004769	Ib/FU	0.201348
_	lb/lb	0.00057	0.000482	0.0003	0.00082	Ib/FU	0.034629
Propane	Ib/Ib	0.000893	0.000757	0.000471	0.001287	Ib/FU	0.054323
_	(b/lb	0.000708	0.000599	0.000373	0.001019	Ib/FU	0.043037
Iso-Butane	lb/lb	0.000035	0.00003	0.000019	0.000051	Ib/FU	0.002146
Formaldehyde	D/Ib	0.000251	0.000213	0.000132	0.000362	Ib/FU	0.015276
Hydrocarbons	d/di	0.039831	0.033729	0.021004	0.057362	Ib/FU	2.421871
Aldehydes	d/di	0.000232	0.000196	0.000122	0.000334	Ib/FU	0.014093
Organic Acids	15/16	0.000295	0.00025	0.000156	0.000425	(b/FU	0.017937
Kerosene						Ib/FU	3.2E-09
Carbon tetrachloride	ql/ql				0.000599	Ib/FU	0.002034
Chloroform	al/a				0.000284	Ib/FU	0.000965
Ethyl chloride	d/di				0.000637	Ib/FU	0.002165
Ethylene dichloride					0.001647	IB/FU	0.005592
Trichloroethane					0.000487	B/FU	0.001654
Vinyl chloride	ql/qi				0.000303	Ib/FU	0.001031
Hydrochloric acid	lb/lb			0.000041	0.000029	tb/FU	0.000953
Sulfuric acid	D/ID	0			0	Ib/FU	0
Propylene	D/Ib	0			0	Ib/FU	0
1,2-butylene			-		0	Ib/FU	0
Z-nitropropane					0	Ib/FU	0
Acetonitale					0	INFU	0
Bromocniorodiffuoromethane					0 (Ib/FU	0
Bromothfilloromethane					0	ID/FIU	0

Dichlorodifluoromethane					0	Ib/FU	0
Methanoi Naphthalene					o o	EATE DEATE	00
Nitric acid					0	Ib/FU	0
Butyl alcohol		0 0	0 0	0.00078	0.000414	DAG DE	0.017849
Allphatic hydrocarbons		0		0			0
Wastewater Emissions							
Wastewater	Ib/Ib	34.85286	34.39827	24.87046	89.14841	IBVFU	2432.414
WW Reinj'd	tb/tb	1.939361	1.642264	1.022673	2.792938	Ib/FU	117.9198
www Discharg.	E/Ib	0.857607	0.726227	0.452237	1.235067	Ib/F U	52.14546
WW Injected	Ib/Ib	0.281159	0.238087	0.148262	0.404908	IMFU	17.09541
Arsenic	(b/lb	3.5E-07	3.0E-07	1.9E-07	5.1E-07	Ib/FU	0.000022
Benzene	Ib/Ib	8.6E-06	7.2E-06	4.5E-08	0.000012	IB/FU	0.00052
Boron	1P/ID	0.000182	0.000154	0.000096	0.000262	Ib/FU	0.011061
Sodium	tb/lb	0.172821	0.146346	0.091133	0.248885	Ib/FU	10.5081
Chloride	Ib/Ib	0.136437	0.115536	0.071947	0.196488	IB/FU	8.295869
Mobile ions	1b/1b	0.418408	0.354311	0.220637	0.602563	Ib/FU	25.44066
Oil and Grease	Ib/Ib	0.00428	0.003607	0.002248	0.006134	Ib/FU	0.259003
Cadmium	tb/tb	2.9E-06	2.5E-06	0.000164	4.2E-06	Ib/FU	0.003591
Chromium	Ib/Ib	2.6E-07	2.2E-07	0.000018	3.8E-07	Ib/F U	0.0004
Mercury	Ib/Ib	6.6E-08	5.6E-08	5.3E-08	9.6E-08	Ib/FU	4.4E-06
Thallium	lb/lb	8.3E-08	5.3E-08	3.3E-08	9.0E-08	DF/d	3.8E-06
Sulfuric Acid						Ib/FU	6.8E-08
Iron				0.000263		Ib/FU	5.9E-06
Dissolved Solids						Ib/FU	5.0E-07
Suspended Solids						Ib/F U	1.7E-09
COD						I D/FU	3.3E-09
Phenol						Ib/FU	2.7E-10
Sulfide						IB/FU	2.7E-10
ō						B AFU	5.5E-10
Acid						Ib/FU	5.5E-10
Metals						Ib/FU	2.7E-10
BOD						(b/FU	9.9E-10
Vanadium				4.5E-06		Ib/FU	0.000094
Zinc				1.4E-08		Ib/FU	0.0003
Copper				1.4E-08		Ib/FU	0.00003
Aluminum				0.00002		Ib/FU	0.000427
Titanium dioxide				0.004455		Ib/FU	0.09388
Lead				0.000061		£λ/FU	0.00128

	Magnesium				4.1E-09		Ib/FU	8.5E-08
	Chlodina					0.008326	Ib/FU	0.028275
	Ammonia					0	I b/FU	0
	Hydrogen cyanide					0	Ib/FU	0
	Solid Wester						٠	
	Solid Wastes	1b/1b	0.27641	0.000753	0.593655	0.551663	INFU	52.64637
	Hazardous Wastes	1b/1b	0.000132		0.07913	0.000264	INFU	80.16332
	Fiv Ash						Ib/FU	1.5E-09
	Bottom Ash						Ib/FU	4.1E-10
	Slad						ID/FU	1.6E-10
	FGD Solids						ID/FU	5.7E-10
	U238						IB/FU	3.9E-09
	U236						IB/FU	2.6E-12
	U235						Ib/FU	3.3E-11
	Pu (fissile)						IB/FU	2.7E-11
	Pu (nonfissile)						Ib/FU	1.0E-11
	Fission Products						ID/FU	1.9E-11
	2-nitropropane					0	ID/FU	0
	Acetaldehyde					0	Ib/FU	0
C	Acetone					0	INFU	0
-15	Acetonitrile					0	Ib/FU	0
5	Formaldehyde					0	ID/FU	0
	Methanol					0	Ib/FU	0
	Naphathalene					0	EVFU	0
	Nitric acid					0	ID/FU	0
	Ammonia						ID/FU	0
	Hydrogen cyanide					0	Ib/FU	0

Table C-4

Alternative Gun and Primer CARC System Life Cycle Inventory Summary Results

Notes: West Input

Inventory numbers for individual CARC System components do not include emissions and energy or materials consumption for electric power generation. The "Baseline CARC System" numbers do include electric power generation data.

speedocard ()	92.01	Thinned TC Top	Top Coat		Primer	∢	Prim. Pt. B	Baseline C	Baseline CARC System
Ci Consponents	CUICS	Guantity	CUBITED	CUBILITY	QUantiny	QUANTITY	Cuantry	Units	Quantity
Usage Rate	ft^2/gal.	***			4.				
Volumetric Mixing Ratio	CARC:thin.								
Volumetric Mixing Ratio	P A P					9			
Specific Gravity			_			7 A - 3 8 / - 1	The second secon		
Unit Weight	lb/aal.		1174 188	7 089		14 25708	ø		
Usage Rate	lb/ft^2		0.037147	0.000038		0 020587	0.003907		
Functional Unit (FU)								R^2	The state of the s
Colonial Das errices	a Ojeme								
	nondur.								
Electricity	BTU/Ib		10813.64	5881.702		2849.335	12368.93	BTU/FU	555534.6
Natural gas	BTU/Ib		177054.9	115627		44822.11	199001.2	BTU/FU	9296248
Steam	BTU/Ib		6454.894	3578.371		696.0441	3090.297	BTU/FU	425151
Water	q/qi		486.9277	329.4671		248.7911	907.1772	IMFU	29269 17
Crude oil	q/q		33.01711	27.95911		8.404271	37.31328	INFU	1778 953
Oxygen	d/q		0.078344	0.156721		0.214204	0.266878	IN FO	9 643088
Refinery gases	q/qi		1.234477	0.293007		0		INFU	48 50533
Cobalt oxide	<u>ava</u>		0.0195					INFU	0 724367
Chrome oxide	al/ql		0.0885					Ib/FU	3 28751
Silica	ql/ql		0.28			0		INFL	Q 65822
Iron ore	q/q		0.023108			0.00534			0.968313
Magnetite	D/Ib		0.007703) <u>1</u>	0.286315
Magnesium ore	d/d		0.043719						1 62403
Sodium Chloride	D/ID		0.504494			0.35447	1 573775) <u> </u>	21 38402
Phosphoric acid	D/Ib		0.000926						31.30402
Sulfuric acid	tb/lb		0.052292			0 102582			0.034390
	<u> </u>		0.002232			700781.0		DL/QI	5.906/4
Suirur dioxide			0.000044	,				INFU	0.001619
Hydrocarbons C8 to C10			0.00033	0		0.002477	0.000909	Ib/FU	0.066343
Proprietary Primer Ingredients						0		Ib/FU	0
Chlorine	al/a					0.332521	1.120572	INFU	10.65219
Coal	₽ IP					0		IMEU	0.000012
Phosphate ore	D/D					C			2.0000
						•		}	

Zinc ore Uranium Distillate Fuel Oil Residual Fuel Oil	q _V q ₁			0		BYFU BYFU BYFU	2.8E-09 2.8E-07 3.2E-06
nyuroporential Ilmenite Rumenite	15/16 15/16 18.16			0.135076		PFE DFE DFE	2.780808 7.16945
Air Coke	9/Q1 1/Q1			4.3/0365 0.081637		a D.F.G	69.9 7271 1.268929
Sodium hydroxide	QVQ.			0.018491		B/FC Uπ/π	0.380679
SiAi				2247.6		D.F.G	46271.34
Starch						INFU	0.209911
Soda ash						ID/FU	2.623886
Limestone Bauxite						IB/FI	4.653024 83.96435
Air Emissions							
00	tb/tb	0.011168	0.008917	0.002361	0.01018	Ib/FU	0.578551
PM	tb/tb	0.108338	0.005423	0.000465	0.001296	Ib/FU	4.389692
SOx	d/di	0.006263	0.010748	0.047286	0.113662	Ib/FU	20.71323
VOC	B/Ib	0.234812	0.073978	0.01991	0.083488	Ib/FU	10.08484
Benzene	15/1b	0.001902	0.008641	0.000077	0.000342	Ib/FU	0.151493
Toluene	lb/lb		0.008641	0.000029	0.000128	ID/FU	0.088369
Ethylbenzene	lb/lb		9.7E-06	0.000094	0.000078	Ib/FU	0.003226
Xylene	D/ID	0.000164	9.7E-06	0.001132	0.000459	Ib/FU	0.03103
Cumene	IP/IP			0.000204	0.000904	Ib/FU	0.016253
Phenol	1P/Ip			0.000138	0.000904	Ib/FU	0.014894
Heavy Aromatics	d'a	0.003835				Ib/FU	0.14245
XON	D/ID	0.103415	0.020305	0.00685	0.027098	Ib/FU	4.258177
PM10	D /P	0.001298		0	0	IB/FU	0.291718
Acetaldehyde	lb/lb		0.003166	0	0.000015	Ib/FU	0.031493
Ethylene	D/D	3.6E-08	0.000033	0		Ib/FU	0.000427
ICN	ID/ID				0.000014	Ib/FU	0.004903
Chlorine	D/ID	0.005808		0.00581	0.025757	Ib/FU	0.422855
MEX	th/lb	0	0.001769	0	0	Ib/FU	0.015988
Isobutyraldehyde	ql/qt		0.028462			Ib/FU	0.257241
Acetone	lb/lb	0.0001	0.000085	0.000025	0.000123	Ib/FU	0.005425
Ammonia	a g :			0	0.000189	Ib/FU	0.00064
Fluorine	1			0 (IB/FU	0
Lead	ava			0		Ib/FU	6.6E-11

MIBK	lb/lb	C	c	c	c	IP/EI	c
learned alcohol	144		•	•	, () (
isopropyi arconor		>	>	5	5	D/FC	0
ZAK	[Mp]	0.00138	0	0	0	Ib/FU	0.051278
Aromatic hydrocarbons	1b/1b	0	0	0.000949	0.000087	Ib/FU	0.019837
Butyl acetate	Ib/Ib	0	0	0	0	Ib/FU	0
Naphtha	lb/lb	0	0	0	0	INFL E	
Propyl acetate	(b/lb	0	0	0	0	D/FC	0
MPK	Ib/Ib	0	0	0	0	INFU	· c
Butyi cellosolve	tb/tb	0	0	0	0	D/FC	
Hexyl acetate	fb/lb	0	0	0	0	Ib/FU	· c
C02	tb/tb	3.523738	2.983926	1.273899	3.982246	D-FC	197,6185
Hexane	fb/fb	0.000798	0.000676	0.000203	0.000902	INFU	0.043021
Heptane	lb/lb	0.001028	0.000871	0.000262	0.001162	₽¥Q	0.055392
Octane	D/D	0.000687	0.000582	0.000175	0.000777	ID/FU	0.037042
C-7 cycloparaffins	Ib/Ib	0.000145	0.000123	0.000037	0.000164	IDVFU	0.007804
C-8 cycloparaffins	ql/ql	0.000053	0.000045	0.000013	90000	Ib/FU	0.002853
Pentane	tb/ib	0.000499	0.000422	0.000127	0.000563	Ib/FU	0.026863
Methane	lb/lb	0.003311	0.002804	0.000843	0.003742	Ib/FU	0.17842
Ethane	Ib/Ib	0.00057	0.000482	0.000145	0.000644	Ib/FU	0.030686
Propane	ql/ql	0.000893	0.000757	0.000227	0.00101	Ib/FU	0.048137
n-Butane	fb/lb	0.000708	0.000599	0.00018	0.0008	(b/FU	0.038136
Iso-Butane	16/1b	0.000035	0.00003	9.0E-06	0.00004	Ib/FU	0.001902
Formaldehyde	lb/lb	0.000251	0.000213	0.000064	0.00036	Ib/FU	0.013796
Hydrocarbons	ib/lb	0.039831	0.033729	0.010139	0.045014	Ib/FU	2.146092
Aldehydes	lb/lb	0.000232	0.000196	0.000059	0.000262	fb/FU	0.012488
Organic Acids	q/q	0.000295	0.00025	0.000075	0.000333	Ib/FU	0.015894
Kerosene						Ib/FU	3.0E-09
Carbon tetrachloride	lb/lb				0	Ib/FU	0
Chloroform	tb/tb				0	Ib/FU	0
Ethyl chloride	Ib/Ib				0	Ib/FU	0
Ethylene dichloride	fb/lb				0	Ib/FU	0
Trichloroethane	15/16				0	Ib/FU	0
Vinyi chloride	lb/lb			•	0	Ib/FU	0
Hydrochloric acid	D/Ib			0.000068	0	Ib/FU	0.001398
Sulfuric acid	(b/lb	0			0	Ib/FU	0
Propylene		0			0	INFU	0
1,2-butylene					1.5E-07	Ib/FU	5.0E-07
2-nitropropane					0.000129	Ib/FU	0.000439
Acetonitrile					5.1E-06	Ib/FU	0.000017
Bromochlorodifluoromethane					4.7E-07	Ib/FU	1.6E-06
Bromotrifluoromethane					1.8E-06	Ib/FU	8.0E-06

Table C-5

Alternative Thinner CARC System Life Cycle Inventory Summary Results

Notes:

Inventory numbers for individual CARC System components do not include emissions and energy or materials consumption for electric power generation. The "Baseline CARC System" numbers do include electric power generation data.

Baseline CARC System Units Quantity	BTU/FU 766296.9 BTU/FU 13071060 BTU/FU 547298.8 Ib/FU 2449.64 Ib/FU 13.74273 Ib/FU 1.003275 Ib/FU 1.281821 Ib/FU 1.281821 Ib/FU 1.281821 Ib/FU 0.396294 Ib/FU 0.002242 Ib/FU 0.0016979 Ib/FU 0.0291793
Prim. Pt. B Quantity 8.40752 0.004704	12217.84 293983.5 2840.313 967.3135 47.54699 0.304434 0.3622545
Auantity Quantity Quantity Quantity 14.59333 9.40752 0.029187 0.004704	5176.439 83911.35 2511.59 352.796 17.41074 0.279948 0.161095 0.003184 0.14823 0.39417 0.009997
unner Primer Jantity Quantity	3020.153 48511.73 275.1848 153.6514 17.0792 0.097628 0.192075
Coat Thi	10813.64 302 177054.9 485 6454.894 275 486.9277 153 33.01711 17 0.078344 0.01 1.234477 0.11 0.0885 0.0885 0.0885 0.026 0.023108 0.043719 0.000926 0.000926 0.000044 0.000033
Thinned TC Quantity	
Units ft^2/gal. CARC:thin Pt. A:Pt. B Ib/ft^2	BATUND BATUND BATUND BATUND BATUND BATUND BATUND BATUND BAND BAND BAND BAND BAND BAND BAND BA
LCI Components Usage Rate Volumetric Mixing Ratio Volumetric Mixing Ratio Specific Gravity Unit Weight Usage Rate Functional Unit (FU)	Electricity Natural gas Steam Water Crude oil Oxygen Refinery gases Ib/lb Chrome oxide Silica Iron ore Magnesium ore Sodium Chloride Phosphoric acid Sulfuric acid Sulfur dioxide Chlorine Chlorine Cobalt oxide Ib/lb Ib/lb Silica Ib/lb Silica Ib/lb Cobalt oxide Ib/lb Ib/lb Silica Ib/lb Cobalt oxide Ib/lb Ib/lb Cobalt oxide Ib/lb

8.347482 3.8E-09 3.9E-07 4.5E-06 0.006343 2.350849 6.060934 76.06144 1.072732 0.32182 0.053637 39117.03 0.209911 2.623886 4.653024 83.96435	1.289302 5.947552 21.49843 14.20999 0.110301 0.023822 0.02098 0.047505 0.021642 0.197299 5.879257 0.310462 0.054276 0.005426 0.005426 0.006726 0.006726 0.007423 6.2E-06 0.000876
MATERIAL PROPERTIES OF THE PRO	
·	0.004981 0.110846 0.077079 0.000476 0.000251 0.00064 0.001 0.001 0.001 0.001468 9.8E-07 0
0.286 0.080544 0.207859 2.606004 0.036754 0.011026 0.001838	0.02184 0.001525 0.058768 0.000125 0.00017 0.000018 0.000163 0.000163 0.000163 0.000163 0.000163 0.000077 0.000053 2.1E-07 0.000098
	0.005387 0.00298 0.03401 0.045559 0.005872 0.007122 0.007122 0.000025 0.000092 0.000092
	0.011166 0.10838 0.006283 0.234812 0.001902 0.000242 0.000242 0.000242 0.000242 0.000242 0.000242 0.000242 0.000131 0.000131 0.000131
ممممم م	
Zinc ore Uranium Distillate Fuel Oil Residual Fuel Oil Hydropotential Ilmenite Rumenite Air Coke Sodium hydroxide SIAI Fuel Starch Soda ash Limestone Bauxite	Air Emissions CO PM SOX VOC Benzene Toluene Ethylbenzene Xylene Cumene Phenol Heavy Aromatics NOX PM10 Acetaidehyde Ethylene HCN Chlorine MEK Isobutyraldehyde Acetone Aretone Aretone Aretone Lead

MIBK	ql/ql	0	0	0.000383	0.002559	IMFU	0.023224
leanmy alcohol	th/th	c	c	C	C	11/11	
MAN WINDS	404	0.010103) C	•	• •		0 524452
A section by described	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000	•		7 0000	ב ב ב	0.0000
Alomatic hydrocarbons		0.000430	0,000		- COOOC-	֓֞֞֜֝֞֜֜֞֝֜֜֝֓֓֓֓֓֓֜֜֜֜֓֓֓֓֡֓֓֓֡֓֜֜֜֜֓֓֡֓֡֓֡֡֓֡֡֡֓֜֝֡֓֡֓֡֡֡֡֓֡֓֡֡֡֡֓֡֡֡֡֡֡֡֡	0.022323
Buryl acetate	מואם:	0.000442	0.001310	0.003828)	בו ביי	218281.0
Naphtha	ומעם	0.001281	0	0	Ð	DAFC	0.065909
Propyl acetate	Ib/Ib	0	0	0	0	INFU	0
MPK	Ib/Ib	0	0	0	0	ID/FU	0
Butyl cellosolve	lb/lb	0		0	0	EVFU	0
Hexyl acetate	lb/lb	0	0.00489	0	0	ID/FU	0.00546
CO2	Ib/Ib	3.523738	1.822771	2.08293	5.074648	INFU	267.9975
Hexane	lb/lb	0.000798	0.000413	0.000421	0.00115	INFU	0.05924
Heptane	lb/lb	0.001028	0.000532	0.000542	0.001481	Ib/FU	0.076275
Octane	fb/lb	0.000687	0.000358	0.000363	0.00099	Ib/FU	0.051007
C-7 cycloparaffins	fb/lb	0.000145	0.000075	0.000076	0.000209	INFU	0.010746
C-8 cycloparaffins	lb/lb	0.000053	0.000027	0.000028	0.000076	Ib/FU	0.003929
Pentane	Ib/Ib	0.000499	0.000258	0.000263	0.000718	ID/FU	0.03699
Methane	lb/lb	0.003311	0.001713	0.001746	0.004769	INFU	0.245687
Ethane	Ib/lb	0.00057	0.000295	0.0003	0.00082	ID/FU	0.042255
Propane	lb/lb	0.000893	0.000462	0.000471	0.001287	Ib/FU	0.066285
n-Butane	Ib/Ib	0.000708	0.000366	0.000373	0.001019	INFU	0.052514
Iso-Butane	tb/lb	0.000035	0.000018	0.000019	0.000051	Ib/FU	0.002619
Formaldehyde	Ib/Ib	0.000251	0.00013	0.000132	0.000362	INFU	0.01864
Hydrocarbons	lb/lb	0.039831	0.020604	0.021004	0.057362	Ib/FU	2.955195
Aldehydes	Ib/Ib	0.000232	0.00012	0.000122	0.000334	Ib/FU	0.017196
Organic Acids	fb/lb	0.000295	0.000153	0.000158	0.000425	Ib/FU	0.021886
Kerosene						ID/FU	4.1E-09
Carbon tetrachloride	Ib/Ib				0.000599	Ib/FU	0.002818
Chloroform	lb/lb				0.000284	Ib/FU	0.001337
Ethyl chloride	Ib/Ib				0.000637	ID/FU	0.002999
Ethylene dichloride	lb/lb				0.001647	Ib/FU	0.007745
Trichloroethane	lb/lb				0.000487	ID/FU	0.00229
Vinyl chloride	lb/lb				0.000303	DF/dI	0.001428
Hydrochloric acid	lb/lb			0.000041	0.000029	Ib/FU	0.00132
Sulfuric acid	lb/lb	1.6E-06			0	Ib/FU	0.000083
Propylene	Ib/Ib	0.000022			0	Ib/FU	0.001111
1,2-butylene					0	Ib/FU	0
2-nitropropane					0	Ib/FU	0
Acetonitrie					0	D/FU	0
Bromochlorodifluoromethane Bromotifluoromethane					0 0	15/FU	0 0
					>		>

0 0 0 0 0 0 0	2958.256 143.8871 63.62849 20.86002 0.000026 0.013497 12.8221 10.12271 31.04299 0.316038 0.004944 0.000552 5.5E-06 4.7E-06 8.7E-08 7.4E-08 6.3E-10 7.0E-10 7.0E-10 3.5E-10 1.3E-09 0.000041 0.000041 0.0000591
44444444444444444444444444444444444444	
0 0 0 0.000574 0	89.14841 2.792936 1.235067 0.404906 5.1E-07 0.000262 0.196488 0.0005134 4.2E-06 3.8E-07 9.6E-08 9.0E-08
0.001081	24.87046 1.022673 0.452237 0.148262 1.9E-07 4.5E-06 0.000098 0.001133 0.071947 0.220637 0.000246 0.00018 5.3E-08 3.3E-08 1.4E-06 1.4E-06 0.00002
000	17.7558 1.003199 0.443626 0.145439 1.8E-07 4.4E-08 0.002203 1.5E-08 1.4E-07 3.4E-08 3.2E-08
000	34.85286 1.939381 0.857607 0.281159 3.5E-07 8.8E-06 0.00428 2.9E-06 6.6E-08 6.3E-08
Dichlorodifluoromethane Methanol Naphthalene Nitric acid Butyl alcohol Nitroethane Aliphatic hydrocarbons	Wastewater Emissions Wastewater WWW Reinj'd WWW Discharg. WWW Injected Arsenic Benzene Benzene Benzene Boron Sodium Chloride Mobile ions Oil and Grease Cadmium Chromlum Mercury Thallium Sulfuric Acid Iron Dissolved Solids COD Phenol Sulfide Oil Acid Metals BOD Vanadium Zinc Copper Aluminum Titanium dioxide Lead

Magnesium Chlorine Ammonia Hydrogen cyanide				4.1E-09	0.008326 0 0	IBAFU IBAFU IBAFU	1.2E-07 0.039165 0
Solid Wastes Solid Wastes Hazardous Wastes Fly Ash	d/d d/di	0.27641	0.000478	0.593655	0.551663 0.000264	UPARU UPARU UPARU	62.13212 80.80762 1.9E-09
Bottom Ash Slag FGD Solids U238							5.3E-10 2.0E-10 7.2E-10 5.0E-00
U236 U235 Pu (fissile)							3.3E-12 4.2E-11 3.4E-11
Pu (nonfissile) Fission Products 2-nitropropane Acetaidehyde					00	18 18 18 18 18 18 18 18 18 18 18 18 18 1	1.3E-11 2.4E-11 0
Acetone Acetonitrile Formaldehyde					000	INFU UNFU	0000
Methanol Naphathalene Nitric acid Ammonia Hydrogen cyanide					0000	154 154 154 154 154 154 154	00000

Alt. Primer & Thinner CARC System Life Cycle Inventory Summary Results

Notes:

Inventory numbers for individual CARC System components do not include emissions and energy or materials consumption for electric power generation. The "Baseline CARC System" numbers do include electric power generation data.

Baseline CARC System Units Quantity A2	742279.6 12788675 498327.6 40765.31 2338.21 11.50356 63.72835 1.003275 4.553325 1.3377 1.341152 0.396294 2.249343 43.46975 0.002242 0.016979 0.016979
Baseline CA Units	8 TUTOR 8 TO THE STATE OF THE S
Ouantity Quantity 9.411273 0.004708	12891.53 215194.5 3130.39 957.8537 39.80183 0.268878 1.573775
Auantity Quantity Quantity Quantity 14.25706 9.411273 0.028514 0.004706	4274.133 88971.35 805.3541 386.8551 15.18903 0.214204 0 0.00534 0.35447 0.192562 0
Primer Quantify Quantify	ღოლ 4 И ლ ს
Thinner Quantity 0.001117	3020.153 48511.73 275.1648 153.6514 17.0792 0.097628 0.192075
Coat initity	10813.64 177054.9 6454.894 486.9277 33.01711 0.078344 1.234477 0.0885 0.0885 0.0885 0.023108 0.007703 0.007703 0.000926 0.000926 0.000024
Thinned TC Top Quantity Qua	
Units ff^2/gal. CARC:thin. Pt. A:Pt. B Ib/gal. Ib/ff^2	umption BTU/B BTU/
LCI Components Usage Rate Volumetric Mixing Ratio Volumetric Mixing Ratio Specific Gravity Unit Weight Usage Rate Functional Unit (FU)	Resource and Energy Consumption Electricity Natural gas Steam Water Crude oil Oxygen Refinery gases Cobatt oxide Chrome oxide Chrome oxide Ib/lb Silica Iron ore Magnesium ore Phosphoric acid Sulfur dioxide Ib/lb Sulfur dioxide Ib/lb Hydrocarbons C8 to C10 Ib/lb Proprietary Primer Ingredients Ib/lb Coal Ib/lb Phosphate ore Ib/lb Ib/lb Coal Ib/lb Ib/lb Chlorine Chlorine Ib/lb Ib/lb Proprietary Primer Ingredients Ib/lb Coal Ib/lb

Zinc ore	qVq1			0		Ib/FU	0
Uranium						Ib/FU	3.7E-09
Distillate Fuel Oil						Ib/FU	3.8E-07
Residual Fuel Oil						I b/FU	4.3E-06
Hydropotential						m^3-m/FU	0.006128
Ilmenite	Ib/Ib			0.135076		IB/FU	3.851554
Rumenite	Ib/Ib			0.348251		Ib/FU	9.930038
Air	ID/ID			4.370365		INFU	124.6166
Coke	I P/IP			0.061637		INFU	1.757529
Sodium hydroxide	tb/tb			0.018491		IMFU	0.527259
SIAI	Ip/Ib			0.003082		Ib/FU	0.087876
Fuel	Ib/Ib			2247.6		Ib/FU	64088.07
Starch						Ib/FU	0.209911
Soda ash						Ib/FU	2.623886
Limestone						Ib/FU	4.653024
Bauxite						ID/FU	83.96435
Air Emissions							
00	Ib/Ib	0.011166	0.005387	0.004562	0.010987	Ib/FU	0.782302
PM	Ib/Ib	0.108338	0.00298	0.002333	0.00208	Ib/FU	5.955807
SOx	Ib/Ib	0.006263	0.03401	0.047844	0.113787	Ib/FU	21,13969
VOC	tb/lb	0.234812	0.045559	0.027655	0.086328	Ib/FU	13.32696
Benzene	e qi/qi	0.001902	0.005872	0.005585	0.002362	₽/FU	0.274756
Toluene	Ib/Ib	0.000249	0.007122	0.005534	0.002145	D/FC	0.188631
Ethylbenzene	Ib/Ib	0.000025	0	0.000011	0.000047	ID/FU	0.001828
Xylene	Ib/Ib		0.000825	0.000011	0.000047	ID/FU	0.047196
Cumene	lb/lb			0.000204	0.000904	Ib/FU	0.022512
Phenol	al/a	0.000242		0.000138	0.000904	Ib/FU	0.020629
Heavy Aromatics	ql/ql	0.003835				Ib/FU	0.197299
NOX	d/d	0.103415	0.012404	0.011777	0.028905	Ib/FU	5.806429
PM10	Ib/Ib	0.001298		0	0	INFU	0.310286
Acetaldehyde	ID/ID		0.001967	0	0.000015	Ib/FU	0.006186
Ethylene	Ib/Ib		0.000082	0		Ib/FU	0.000286
HCN	ib/lb	0.000131			0.000014	ID/FU	0.00679
Chlorine	Ib/Ib	0.005808		0.00581	0.025757	Ib/FU	0.585698
MEX	lb/lb	0	0.004025	0	0	Ib/FU	0.004495
Isobutyraldehyde	Ib/Ib		0			Ib/FU	0
Acetone	Ib/Ib	0.0001	0.000052	0.000046	0.000131	INFU	0.007133
Ammonia	Ib/Ib			0	0.000189	IMEU DAFU	0.000887
Fluorine	lb/lb			0		INFU	0
Lead	<u>ava</u>			C		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
)		5	0.00-11

MIBK	lb/lb	c	c	c	c	112/41	c
	1 2 1	•	• (•	> (5	•
Isopropyi aiconoi	ONO	0	5	0	0	IBAFO	0
MIAK	al val	0.010193	0	0	0	D-FC	0.524453
Aromatic hydrocarbons	lb/lb	0.000438	0	0.001315	0.000121	INFU	0.060582
Butyl acetate	ID/ID	0.000442	0.001316	0	0	IMFU	0.024192
Naphtha	lb/lb	0.001281	0	0	0	INFU	0.065909
Propyl acetate	Ib/Ib	0	0	0	0	INFO	0
MPK	lb/lb	0	0	0	0	ID/FU	0
Butyl cellosolve	tb/tb	0	0	0	0	Ib/FU	0
Hexyl acetate	lb/lb	0	0.00489	0	0	INFU	0.00546
CO2	Ib/Ib	3.523738	1.822771	1.997999	4.247836	INFU	260,2931
Hexane	d/qi	0.000798	0.000413	0.000367	0.000963	INFU	0.056546
Heptane	lb/lb	0.001028	0.000532	0.000473	0.001239	Ib/FU	0.072806
Octane	lb/lb	0.000687	0.000356	0.000316	0.000829	Ib/FU	0.048687
C-7 cycloparaffins	lb/lb	0.000145	0.000075	0.000067	0.000175	INFU	0.010257
C-8 cycloparaffins	lb/lb	0.000053	0.000027	0.000024	0.000064	Ib/FU	0.00375
Pentane	tb/lb	0.000499	0.000258	0.000229	0.000601	INFU	0.035307
Methane	Ib/Ib	0.003311	0.001713	0.001523	0.003992	Ib/FU	0.234511
Ethane	lb/lb	0.00057	0.000295	0.000262	0.000687	Ib/FU	0.040333
Propane	Ib/Ib	0.000893	0.000462	0.000411	0.001077	IDAFU	0.06327
n-Butane	lb/lb	0.000708	0.000366	0.000326	0.000853	INFU	0.050125
Iso-Butane	lb/lb	0.000035	0.000018	0.000018	0.000043	Ib/FU	0.0025
Formaldehyde	D/D	0.000251	0.00013	0.000118	0.000379	IB/FU	0.018151
Hydrocarbons	lb/lb	0.039831	0.020604	0.018324	0.048016	INFU	2.820768
Aldehydes	Ib/Ib	0.000232	0.00012	0.000107	0.000279	INFU	0.016414
Organic Acids	Ib/Ib	0.000295	0.000153	0.000136	0.000356	INFU	0.020891
Kerosene						INFU	3.9E-09
Carbon tetrachloride	Ib/Ib				0	IB/FU	0
Chloroform	D/D				0	INFU	0
Ethyl chloride					0	INFU	0
Ethylene dichloride	lb/lb				0	INFU	0
Trichloroethane	lb/lb				0	INFU	0
Vinyl chloride	Ib/Ib				0	Ib/FU	0
Hydrochloric acid	lb/lb			0.000068	0	Ib/FU	0.001937
Sulfuric acid	lb/lb	1.6E-06			0	Ib/FU	0.000083
Propylene	lb/lb	0.000022			0	INFU	0.001111
1,2-butylene					1.5E-07	Ib/FU	7.0E-07
Z-nitropropane					0.000129	IBVFU	0.000608
Acetonitrile					5.1E-06	INFU	0.000024
Bromochlorodifluoromethane					4.7E-07	Ib/FU	2.2E-06
Bromotrifiuoromethane					1.8E-06	Ib/FU	8.3E-06

Dichlorodifluoromethane Methanol					0.000234 4.0E-06	INFU INFU	0.001102
Naphthalene					0.000137	UF/A	0.000643
Butyl alcohol		0	0	0.001463	0	7 T	0.041712
Nitroethane		0	0	0	0.000822	Ib/FU	0.003869
Aliphatic hydrocarbons		0	0	0	0	Ib/FU	0
Wastewater Emissions							
Wastewater	d/di	34.85286	17.7556	29.30073	71.53912	Ib/FU	2985.152
ww Reinj'd	lb/lb	1.939361	1.003199	0.892174	2.337883	Ib/FU	137.3419
WW Discharg.	q/qi	0.857607	0.443626	0.394529	1.033838	Ib/FU	60.73412
WW Injected	Ib/Ib	0.281159	0.145439	0.129343	0.338934	Ib/FU	19.91113
Arsenic	Ib/Ib	3.5E-07	1.8E-07	1.6E-07	4.3E-07	Ib/FU	0.000025
Benzene	Ib/Ib	8.6E-06	4.4E-08	3.9E-06	0.00001	ID/FU	0.000606
Boron	q/q	0.000182	0.000094	0.000084	0.000219	Ib/FU	0.012883
Sodium	tb/tb	0.172821	0.089397	0.079504	0.208334	Ib/FU	12.23885
Chloride	lb/lb	0.136437	0.070577	0.062766	0.164474	I D/FU	9.662247
Mobile ions	Ib/Ib	0.418408	0.216436	0.192482	0.504387	Ib/FU	29.63089
Oil and Grease	Ib/Ib	0.00428	0.002203	0.00196	0.005135	Ib/FU	0.301662
Cadmium	lb/lb	2.9E-06	1.5E-06	0.000273	3.5E-06	ID/FU	0.007953
Chromium	lb/lb	2.6E-07	1.4E-07	0.000031	3.2E-07	ID/FU	0.00089
Mercury	ID/ID	8.6E-08	3.4E-08	6.1E-08	8.0E-08	Ib/FU	5.6E-06
Thallium	d/d	6.3E-08	3.2E-08	2.9E-08	7.6E-08	Ib/FU	4.4E-06
Sulfuric Acid						Ib/FU	8.4E-08
Iron				0.000441		Ib/FU	7.2E-06
Dissolved Solids						Ib/FU	6.1E-07
Suspended Solids						Ib/FU	2.1E-09
COD						INFU	4 .0E-09
Phenol						D/FU	3.4E-10
Sulfide						Ib/FU	3.4E-10
ō						Ib/FU	6.7E-10
Acid						Ib/FU	6.7E-10
Metals						Ib/FU	3.4E-10
BOD						Ib/FU	1.2E-09
Vanadium				7.5E-08		Ib/FU	0.000213
Zinc				2.4E-06		₽/FU	0.000068
Copper				2.4E-06		Ib/FU	0.000068
Aluminum				0.000034		Ib/FU	0.000968
Titanium dioxide				0.007471		ID/FU	0.213034
Lead				0.000102		Ib/FU	0.002905

1.9E-07 0.12121 1.7E-08 1.2E-07	61.96051 79.46515 1.8E-09 5.1E-10 1.9E-10 7.0E-10 4.8E-09 3.2E-12 4.0E-11 1.3E-11 0.008079 0.010418 0.005591 0.000581 0.000643 0.000643 6.6E-06 6.6E-06
5년 19년 19년 - 19년 19년 - 19년 -	
0.025758 3.7E-07 2.5E-08	0.001717 0.002214 0.000188 0.000969 0.0001951 1.4E-06 0.00003 1.4E-06
6.8E-09	0.03396
	0.000476
	0.000132
	q/q q/q
Magnesium Chlorine Ammonia Hydrogen cyanide	Solid Wastes Solid Wastes Hazardous Wastes Fiy Ash Bottom Ash Slag FGD Solids U238 U238 U238 Pu (fissile) Pu (fissile) Fission Products 2-nitropropane Acetaldehyde Acetone Acetone Acetone Acetone Acetonitrile Formaldehyde Methanol Naphathalene Nitric acid Ammonia

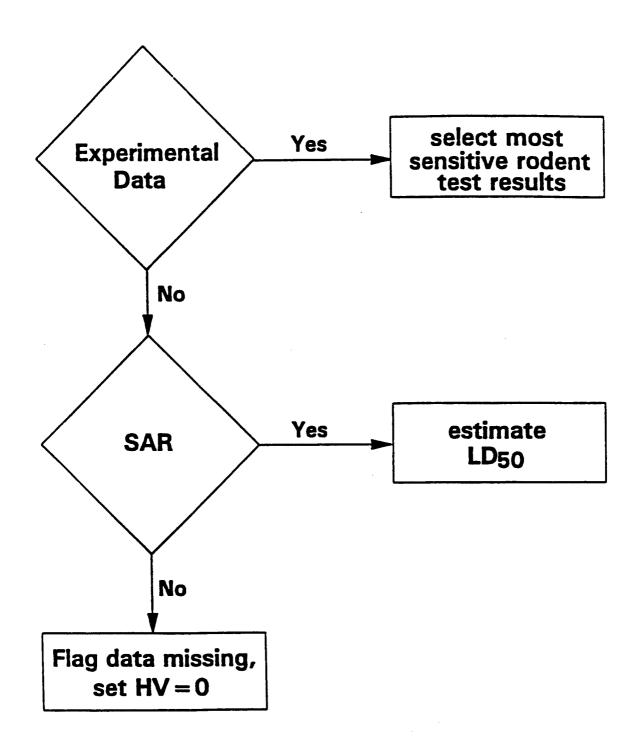


Figure D-1. Decision Tree for Oral LD₅₀ Data Selection (from EPA, 1994

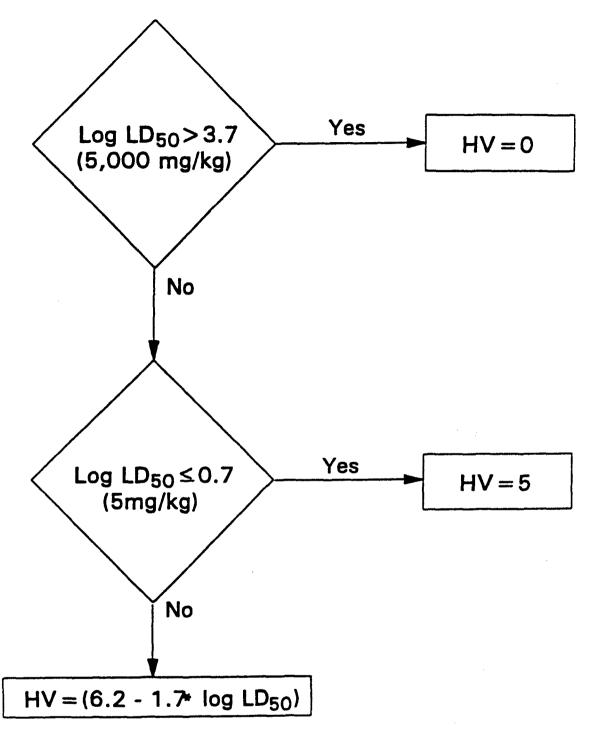


Figure D-2. Decision Tree for Oral LD₅₀ Hazard Value (from EPA, 1994)

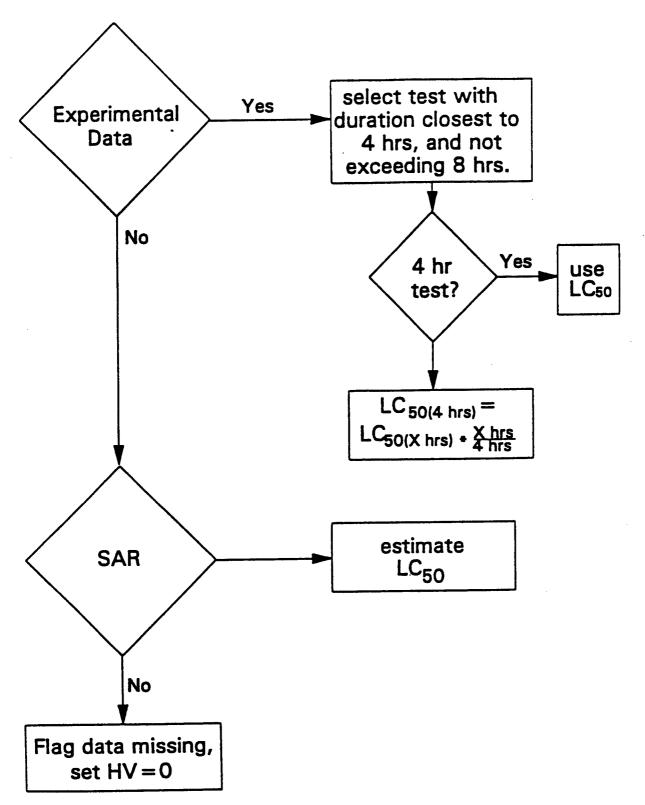


Figure D-3. Decision Tree for Inhalation LC₅₀ Data Selection (from EPA, 1994)

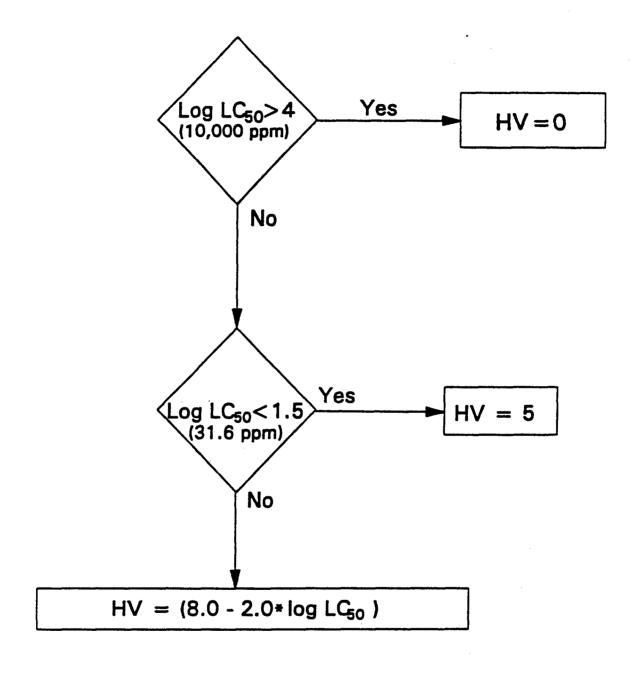
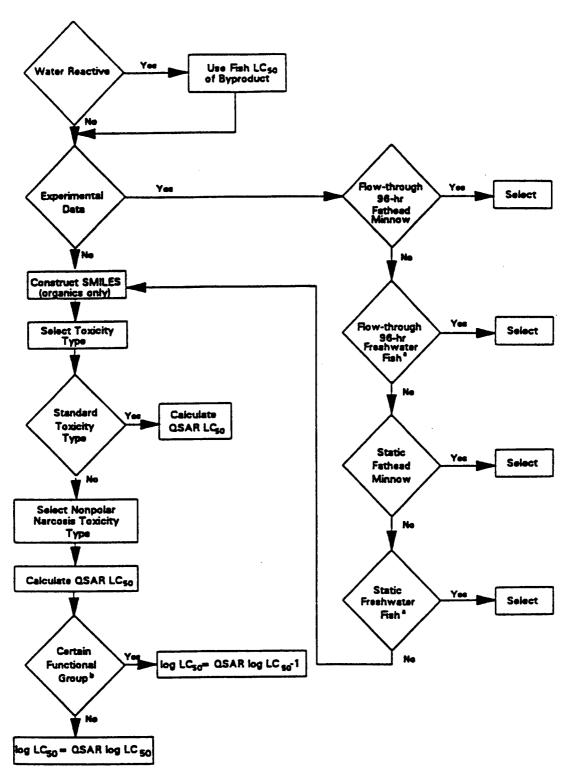



Figure D-4. Decision Tree for Inhalation LC₅₀ Hazard Values (from EPA, 1994)

^{*}excluding trout

Figure D-5. Decision Tree for Fish LC₅₀ Data Selection (from EPA, 1994)

b includes good electrophiles, good nucleophiles, strong acids, chemicals with an aromatic ring, and certain reactive groups

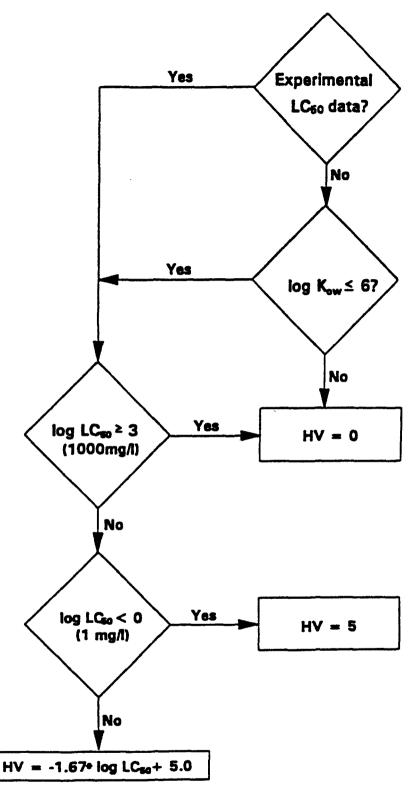


Figure D-6. Decision Tree for Aquatic LC₅₀ Hazard Value (from EPA, 1994)

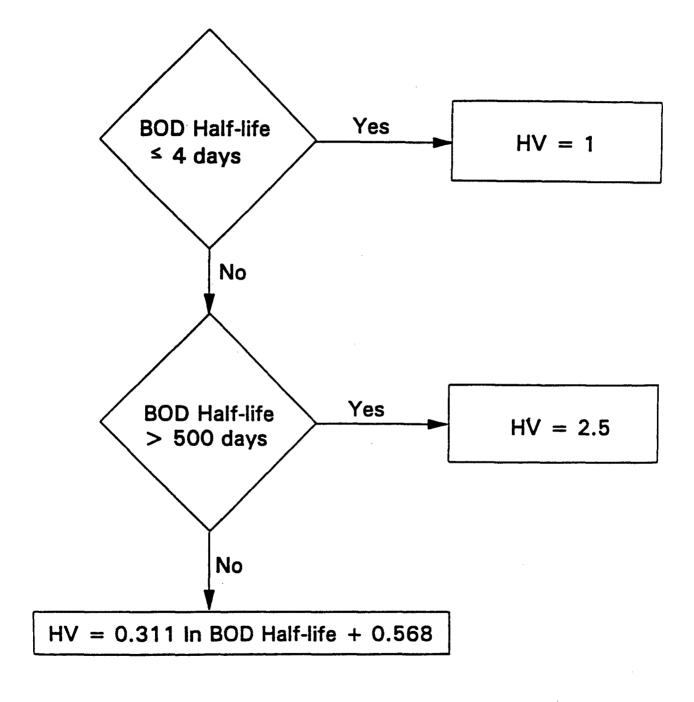


Figure D-7. Decision Tree for BOD Half-Life Hazard Value (from EPA, 1994)

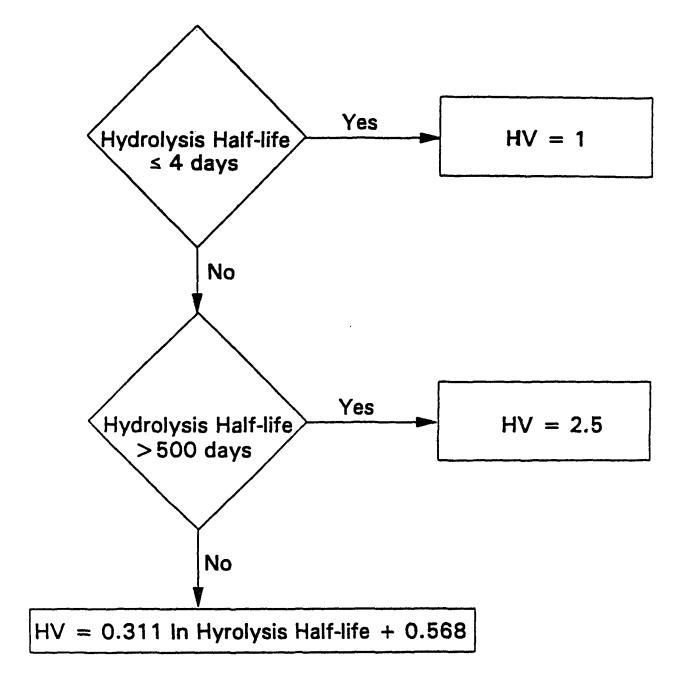


Figure D-8. Decision Tree for Hydrolysis Half-Life Hazard Value (from EPA, 1994)

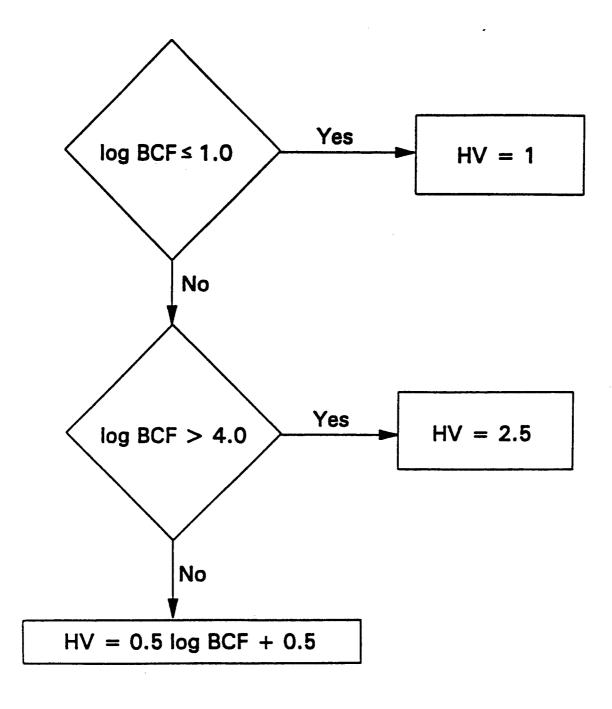


Figure D-9. Decision Tree for BCF Hazard Value (from EPA, 1994)

BASELINE SYSTEM

Ų	2
Š	<u></u>
+	ζ
=	֚֚֭֚֭֭֭֭֭֭֚֚֡֝֝֟֝֟֜֝֜֜֝֟֜֜֓֓֓֓֓֓֜֟֜֜֜֟֡֓֓֓֩֡֡֡֩
	į
	ر ج
I CIT	֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡֡
A 1 1	֚֚֚֚֚֚֝֝֝֝֝֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
THE BANDAT WALLE	(
1	ָ
CON	<u> </u>
U	Ų
3	כ
L	נ

<u> </u>	\	AHP Weighting	Normalized Factored	Weigh	Weighted Normalized	70	Baseline
CARCOPT			9	5	\ \ \		€0.843
GLOBAL	auc	0.17983	1 090		-	0.347	
	GLBLWRM	0.11328	1.013		0.115		
	FSLFUELS	0.02855	1.263		0.036		
REGIONAL						0.220	
	ACIDDEP	0.06253	1.198		0.075	:	
	SMOG	0.13007	1.114		0.145		
	WTRUSE	0.01002			000.0		
LOCAL						0.276	
	TOXICITY			,	0.237		
	HUMAN	0.06155	2.150	0.132			
	ENVTERR	0.02052	3.799	0.078			_
	ENVAQ	0.02052	1.280	0.026			
D	LANDUSE	0 02507	1 577		0000		

OZONE DEPLETION POTENTIAL IMPACT CALCULATIONS

	ODP Equiv.	inventory Value	Factored	Normalized Factored
CHEMICAL NAME	Factor	Ib/FU	Score	Score
Total ODP Score			0.003	1.090
Normalizing Factor			0.003	
CARBON TETRACHLORIDE	1.080	0.003	0.003	1.000
DICHLORODIFLUOROMETHANE	1.000	0.000	0.000	0.000
TRICHLOROETHANE (METHYL CHLOROFORM	0.120	0.002	0.000	0.090

GLOBAL WARMING POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	GWP Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total GWP Score			304.229	1.013
Normalizing Score			300.337	
CARBON TETRACHLORIDE	1300	0.003	3.663	0.012
CO2	1	300.337	300.337	1.000
DICHLORODIFLUOROMETHANE	7100	0.000	0.000	0.000
TRICHLOROETHANE	100	0.002	0.229	0.001

RESOURCE DEPLETION IMPACT CALCULATIONS

	RESOURCE DEPLETION	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	Ib/FU	Score	Score
Total Resource Depetion Score			13,906.073	1.263
Normalizing Score			11,010.628	
BAUXITE	4	83.964	335.857	0.031
CHROME OXIDE	3	4.553	9.107	0.001
COAL		0.292	0.875	0.000
COBALT OXIDE	3	1.003	3.010	0.000
IRON ORE	3	1.282	3.845	0.000
LIMESTONE	1	4.653	4.653	0.000
MAGNESIUM ORE	1	2.249	2.249	0.000
NATURAL GAS	4	602.895	2,411.581	0.219
PETROLEUM (CRUDE OIL)	4	2,752.657	11,010.628	1.000
PHOSPHATE ROCK	3	2.092	6.276	0.001
SALT (SODIUM CHLORIDE)	1	43.084	43.084	0.004
SILICA	1	13.657	13.657	0.001
SODA ASH	1	2.624	2.624	0.000
THALLIUM	4		0.000	0.000
TITANIUM	3	8.412	25.235	0.002
URANIUM (235, 236, 238)	3	0.000	0.000	0.000
WATER INPUT	NA	43,695.190	0.000	0.000
ZINC	4	8.347	33.390	0.003

ACIDIFICATION POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	Acid. Pot. Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Acid. Pot. Score Normalizing Score			25.855 21.584	1.198
AMMONIA	1.880	0.000	0.000	0.000
HYDROCHLORIC ACID	0.880	0.001	0.001	0.000
NOX	0.700	6.099	4.270	0.198
SOX	1.000	21.584	21.584	1.000

PHOTOCHEMICAL OXIDANT POTENTIAL IMPACT CALCULATIONS

PHOTOCHEMICAL OXIDANT POTENTIA	POCP	Inventory	113	Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total POCP Score			6.639	1.114
Normalizing Factor			5.959	
ACETALDEHYDE	0.527	0.089	0.047	0.008
ACETONE	0.178	0.008	0.001	0.000
ALDEHYDES	0.443	0.019	0.009	0.001
AROMATIC HYDROCARBONS (C8-C10)	0.761	0.023	0.017	0.003
BENZENE	0.189	0.203	0.038	0.006
BUTANE (n-)	0.410	0.059	0.024	0.004
BUTANE (iso-)	0.315	0.003	0.001	0.000
BUTYL ACETATE (n-)	0.323	0.150	0.048	0.008
BUTYL ALCOHOL	0.196	0.034	0.007	0.001
CHLOROFORM	0.021	0.001	0.000	0.000
ETHANE	0.082	0.047	0.004	0.001
ETHYL BENZENE	0.593	0.002	0.001	0.000
ETHYLENE	1.000	0.003	0.003	0.000
HEPTANE (n-)	0.529	0.086	0.045	0.008
HEXANE (n-)	0.421	0.067	0.028	0.005
METHANE	0.007	0.276	0.002	0.000
METHANOL	0.123	0.000	0.000	0.000
METHYL ETHYL KETONE	0.473	0.059	0.028	0.005
METHYL ISOAMYL KETONE	0.326	0.524	0.171	0.029
METHYL ISOBUTYL KETONE	0.326	0.023	0.008	0.001
METHYL PROPYL KETONE	0.326	0.000	0.000	0.000
OCTANE (n-)	0.493	0.057	0.028	0.005
PENTANE (n-)	0.408	0.042	0.017	0.003
PROPANE	0.420	0.074	0.031	0.005
PROPYL ACETATE	0.218	0.000	0.000	0.000
PROPYLENE	1.030	0.000	0.000	0.000
TOLUENE	0.563	0.130	0.073	0.012
TRICHLOROETHANE	0.021	0.002	0.000	0.000
VOC	0.397	15.011	5.959	1.000
XYLENE	0.849	0.056	0.048	0.008

HUMAN HEALTH INHALATION TOXICITY IMPACT CALCULATIONS

HH INHALATION							
101	TOXICIT			Normalized			
	Equiv.	Value	Factored	Factored			
CHEMICAL NAME	Factor	Ib/FU	Score	Score			
Total HH Inh. Tox. Factored Score			27.336	2.150			
Normalizing Score			12.715	2.100			
ACETALDEHYDE	7.44	0.089	0.659	0.052			
ACETONE	0	0.008	0.000	0.000			
ACETONITRILE	0	0.000	0.000	0.000			
AMMONIA	5.7	0.000	0.000	0.000			
ALDEHYDES	NA	0.019	0.000	0.000			
ALUMINUM	15.6	0.003	0.046	0.004			
AROMATIC HYDROCARBONS (C8-C10)	NA	0.023	0.000	0.000			
BENZENE	NA	0.203	0.000	0.000			
BUTANE (n-)	17.5	0.059	1.033	0.081			
BUTANE (iso-)	NA	0.003	0.000	0.000			
BUTYL ACETATE (n-)	8.49	0.150	1.270	0.100			
BUTANOL	0.95	0.034	0.033	0.003			
BUTYL CELLOSOLVE	12.29	0.000	0.000	0.000			
BUTYLENE OXIDE, 1,2-	NA	0.000	0.000	0.000			
CADMIUM	2.25		0.000	0.000			
CARBON TETRACHLORIDE	7.06	0.003	0.020	0.002			
CHLORINE	22.05	0.577	12.715	1.000			
CHLOROFORM	2.57	0.001	0.003	0.000			
CO	4.47	1.386	6.195	0.487			
CO2	NA	300.337	0.000	0.000			
CUMENE	1.35	0.027	0.036	0.003			
CYCLOPARAFFINS, C-7	NA	0.012	0.000	0.000			
CYCLOPARAFFINS, C-8	NA	0.004	0.000	0.000			
DICHLORODIFLUOROMETHANE (CFC	0	0.000	0.000	0.000			
ETHANE	NA	0.047	0.000	0.000			
ETHYL BENZENE	3.19	0.002	0.007	0.001			
ETHYLENE	0	0.003.	0.000	0.000			
ETHYLENE CHLORIDE	Ö	0.003	0.000	0.000			
ETHYLENE DICHLORIDE	7.32	0.008	0.057	0.004			
FLUORINE	14.64	0.028	0.410	0.032			
FORMALDEHYDE	15.6	0.021	0.327	0.026			
HEAVY AROMATIC	NA	0.197	0.000	0.000			
HEPTANE (n-)	0	0.086	0.000	0.000			
HEXYL ACETATE	NA	0.056	0.000	0.000			
HEXAMETHYLENE DIISOCYANTE	10		0.000	0.000			
HEXANE (n-)	0	0.067	0.000	0.000			
HYDROCHLORIC ACID	14.82	0.001	0.020	0.002			
HYDROGEN CYANIDE	30	0.007	0.202	0.016			
ISOBUTYRALDEHYDE	1.86	0.328	0.610	0.048			
ISOPROPYL ALCOHOL	0	0.000	0.000	0.000			
LEAD	NA	0.001	0.000	0.000			
METHANE	NA	0.276	0.000	0.000			
METHANOL	0	0.000	0.000	0.000			
171m 1 7 H 11 T V I	•	0.000	0.000	5.000			

METHYL ETHYL KETONE	1.4	0.059	0.082	0.006
METHYL ISOAMYL KETONE	4	0.524	2.098	0.165
METHYL ISOBUTYL KETONE	2.33	0.023	0.054	0.004
METHYL PROPYL KETONE	NA	0.000	0.000	0.000
NAPTHA, NM&P	NA	0.066	0.000	0.000
NAPHTHALENE	26.45		0.000	0.000
NOX	NA	6.099	0.000	0.000
NITRIC ACID	26.4	0.000	0.000	0.000
NITROETHANE	NA	0.000	0.000	0.000
NITROPROPANE	14.4	0.000	0.000	0.000
OCTANE (n-)	0	0.057	0.000	0.000
ORGANIC ACIDS	NA	0.025	0.000	0.000
PENTANE (n-)	13.34	0.042	0.554	0.044
PHENOL	22.33	0.022	0.483	0.038
PHOSGENE	12.5		0.000	0.000
PHOSPHORIC ACID	30		0.000	0.000
PM	NA	6.007	0.000	0.000
PM-10	NA	0.310	0.000	0.000
PROPANE	NA	0.074	0.000	0.000
PROPYL ACETATE	NA	0.000	0.000	0.000
TOLUENE	2.04	0.130	0.264	0.021
TRICHLOROEHTANE (METHYL CHLO	5.6	0.002	0.013	0.001
VINYL CHLORIDE	18.52	0.001	0.026	0.002
VOC	NA	15.011	0.000	0.000
XYLENE	2.1	0.056	0.118	0.009

TERRESTRIAL TOXICITY IMPACT CALCULATIONS

TERRESTRIAL TOXION TIME ACT CALC	ERRESTRIAL	·		
	TOXICITY Equiv.	Inventory Value	Factored	Normalized Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Terr. Tox. Factored Score			4.084	3.799
Normalizing Score	2.055	0.000	1.075	0.000
ACETALDEHYDE ACETONE	3.255 1.860	0.089 0.008	0.288 0.016	0.268
ACETONE	0.610	0.000	0.016	0.014 0.000
ALUMINUM	0.000	0.001	0.000	0.000
AMMONIA	9.030	0.000	0.000	0.000
ARSENIC	31.730	0.000	0.001	0.001
BENZENE	0.000	0.204	0.000	0.000
BUTYL ACETATE (n-)	0.000	0.150	0.000	0.000
BUTYL ALCOHOL	6.180	0.034	0.212	0.197
BUTYL CELLOSOLVE	7.590	0.000	0.000	0.000
BUTYLENE OXIDE, 1,2-	1.610	0.000	0.000	0.000
CADMIUM	21.030	0.005	0.105	0.097
CARBON TETRACHLORIDE	1.710	0.003	0.005	0.004
CHLORINE CHLOROFORM	0.000 6.160	0.616 0.001	0.000 0.008	0.000 0.008
CHROMIUM, TRIVALENT	19.290	0.001	0.008	0.008
COBALT COMPOUNDS	20.960	0.001	0.000	0.000
COPPER COMPOUNDS	12.000	0.000	0.000	0.000
CUMENE	2.710	0.027	0.073	0.068
DICHLORODIFLUOROMETHANE	1.330	0.000	0.000	0.000
DIETHYLAMINETRIAMINE	5.270		0.000	0.000
ETHYL BENZENE	0.000	0.002	0.000	0.000
ETHYLENE	0.000	0.003	0.000	0.000
ETHYLENE DICHLORIDE	4.890	0.000	0.000	0.000
FGD SOLIDS FLY ASH	0.000	0.000	0.000	0.000
FORMALDEHYDE	0.000 12.600	0.000 0.021	0.000 0.264	0.000 0.245
HEPTANE (n-)	9.500	0.021	0.264	0.245 0.757
HEXANE (n-)	0.000	0.067	0.000	0.000
HEXYL ACETATE	0.000	0.056	0.000	0.000
HEXAMETYHYLENE DIISOCYANTE	2.640		0.000	0.000
HYDROCHLORIC ACID	5.740	0.001	0.008	0.007
HYDROGEN CYANIDE	30.000	0.007	0.202	0.188
IRON	0.000	0.000	0.000	0.000
ISOBUTYRALDEHYDE	1.860	0.328	0.610	0.567
ISOPROPYL ALCOHOL	0.950	0.000	0.000	0.000
KEROSENE	0.000 5.750	0.000	0.000	0.000
LEAD METHYL ETHYL KETONE	5.750 1.860	0.003 0.059	0.015 0.109	0.014
METHYL ISOAMYL KETONE	2.050	0.524	1.075	0.102 1.000
METHYL ISOBUTYL KETONE	2.790	0.023	0.065	0.060
	~~		000	3.000

METHYL PROPYL KETONE	4.570	0.000	0.000	0.000
NAPHTHALENE	3.170	0.000	0.000	0.000
NITRIC ACID	10.200	0.000	0.000	0.000
NITROPROPANE, 2-	8.400		0.000	0.000
PHENOL	7.600	0.022	0.164	0.153
PHOSPHORIC ACID	5.400		0.000	0.000
PROPYL ACETATE	0.870	0.000	0.000	0.000
PLUTONIUM (FISSILE & NONFISSILE)	0.000	0.000	0.000	0.000
SLAG	0.000	0.000	0.000	0.000
SULFURIC ACID	3.600	0.000	0.000	0.000
TOLUENE	0.000	0.130	0.000	0.000
TRICHLOROETHANE (METHYL CHLOR	0.000	0.002	0.000	0.000
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000
VINYL CHLORIDE	7.870	0.001	0.011	0.010
XYLENE	0.520	0.056	0.029	0.027
ZINC	0.000	0.000	0.000	0.000

AQUATIC TOXICITY IMPACT CALCULATIONS

	AQUATIC	1		
	TOXICITY	Inventory	Fastanad	Normalized
CHEMICAL NAME	Equiv. Factor	Value lb/FU	Factored Score	Factored
Total Aquatic Tox. Factored Score	Factor	ID/FU	1.128	Score 1.280
Normalizing Score			0.881	1.200
ACETONITRILE	0.000		0.001	0.000
AMMONIA	21.850		0.000	0.000
ALUMINUM	0.000	0.001	0.000	0.000
ARSENIC	18.750	0.000	0.000	0.000
BENZENE	14.070	0.000	0.001	0.001
BORON	0.000	0.001	0.010	0.000
BUTYL ALCOHOL	0.000	0.013	0.000	0.000
BUTYLENE OXIDE, 1,2-	NA	0.034	0.000	0.000
CADMIUM	36.250	0.005	0.000	0.000
CARBON TETRACHLORIDE	1.200	0.003	0.000	0.204
CHLORIDE	NA	11.375	0.000	
CHLORINE	22.500	0.039	0.881	0.000 1.000
CHLOROFORM	9.750	0.039	0.000	0.000
CHROMIUM, TRIVALENT	16.630	0.001	0.000	0.000
COBALT COMPOUNDS	31.750	0.001	0.009	0.000
COPPER COMPOUNDS	30.000	0.000	0.000	0.000
DICHLORODIFLUOROMETHANE (CFC-1	NA	0.000	0.000	0.000
HYDROCHLORIC ACID	13.860		0.000	0.000
IRON	25.000	0.000	0.000	0.000
LEAD	25.000	0.002	0.044	0.050
MERCURY	37.500	0.000	0.000	0.000
METHYL ISOAMYL KETONE	10.200	0.000	0.000	0.000
NAPHTHALENE	19.570	•	0.000	0.000
NITRIC ACID	15.600		0.000	0.000
NITROPROPANE, 2-	23.400		0.000	0.000
OIL & GREASE	NA	0.355	0.000	0.000
ORGANIC ACIDS	NA		0.000	0.000
PETROLEUM (CRUDE OIL)	NA	0.000	0.000	0.000
PHENOL	11.400	0.000	0.000	0.000
PHOSPHORIC ACID	11.400		0.000	0.000
SODIUM	NA	14.408	0.000	0.000
SULFIDE	NA	0.000	0.000	0.000
SULFURIC ACID	15.000	0.000	0.000	0.000
XYLENE	16.240		0.000	0.000
ZINC	20.300	0.000	0.001	0.001

LAND USE IMPACT CALCULATIONS

CHEMICAL NAME	LAND USE Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Land Use Score			254.826	1.577
Normalizing Score			161.615	
BOTTOM ASH	2.000	0.000	0.000	0.000
FGD SOLIDS	2.000	0.000	0.000	0.000
FLY ASH	2.000	0.000	0.000	0.000
HAZARDOUS WASTE	2.000	80.808	161.615	1.000
PLUTONIUM (FISSILE & NONFISSILE)	NA	0.000	0.000	0.000
SLAG	2.000	0.000	0.000	0.000
SOLID WASTE	1.500	62.140	93.210	0.577
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000

ALTERNATIVE PRIMER

			AHP Weighting	Normalized Factored	Weighted Normalized	Baseline
,	Scale	Issues>	Factor	Score	Factored Score	
CARCOPI	(1.0.671
	GLOBAL					0.203
		ODP	0.17983	0.367	\ \ 	
		GLBLWRM	0.11328	0.927	0.105	
		FSLFUELS	0.02855	1 121	0.032	
	REGIONAL			!	-	0.203
		ACIDDEP	0.06253	1.173	}	
		SMOG	0.13007	0.993	0 129	
		WTRUSE	0.01002		000 0	
	LOCAL				! `\) . 99C U
		TOXICITY			0 226	
		HUMAN	0.06155	1.612	660.0	
		ENVTERR	0.02052	2.635	0.054	
-		ENVAQ	0.02052	3.537	0.073	
D-:		LANDUSE	0.02507	1.585	0000	

OZONE DEPLETION POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	ODP Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total ODP Score			0.001	0.367
Normalizing Factor			0.003	
CARBON TETRACHLORIDE	1.080	0.000	0.000	0.000
DICHLORODIFLUOROMETHANE	1.000	0.001	0.001	0.367
TRICHLOROETHANE (METHYL CHLOROFORM	0.120	0.000	0.000	0.000

GLOBAL WARMING POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	GWP Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total GWP Score			278.555	0.927
Normalizing Score			300.337	
CARBON TETRACHLORIDE	1300	0.000	0.000	0.000
CO2	1	270.734	270.734	0.901
DICHLORODIFLUOROMETHANE	7100	0.001	7.821	0.026
TRICHLOROETHANE	100	0.000	0.000	0.000

RESOURCE DEPLETION IMPACT CALCULATIONS

TEOGORIE DE L'ELTION IIII AOT O	RESOURCE			
	DEPLETION	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Resource Depetion Score			12,343.607	1.121
Normalizing Score			11,010.628	
BAUXITE	4	83.964	335.857	0.031
CHROME OXIDE	2	4.553	9.107	0.001
COAL	3	0.000	0.000	0.000
COBALT OXIDE	3	1.003	3.010	0.000
IRON ORE	3	1.341	4.023	0.000
LIMESTONE	1	4.653	4.653	0.000
MAGNESIUM ORE	1	2.249	2.249	0.000
NATURAL GAS	4	534.932	2,139.727	0.194
PETROLEUM (CRUDE OIL)	4	2,436.041	9,744.165	0.885
PHOSPHATE ROCK	3	0.000	0.000	0.000
SALT (SODIUM CHLORIDE)	1	43.469	43.469	0.004
SILICA	1	13.377	13.377	0.001
SODA ASH	1	2.624	2.624	0.000
THALLIUM	4		0.000	0.000
TITANIUM	3	13.782	41.345	0.004
URANIUM (235, 236, 238)	3	0.000	0.000	0.000
WATER INPUT	NA	40,210.766	0.000	0.000
ZINC	4	0.000	0.000	0.000

ACIDIFICATION POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	Acid. Pot. Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Acid. Pot. Score			25.324	1.173
Normalizing Score			21.584	
AMMONIA	1.880	0.001	0.002	0.000
HYDROCHLORIC ACID	0.880	0.002	0.002	0.000
NOX	0.700	5.877	4.114	0.191
SOX	1.000	21.206	21.206	0.982

PHOTOCHEMICAL OXIDANT POTENTIAL IMPACT CALCULATIONS

PHOTOCHEMICAL OXIDANT POTENTIA	POCP	Inventory	N3	Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total POCP Score	1 40.0.		5.918	0.993
Normalizing Factor			5.959	0.000
ACETALDEHYDE	0.527	0.040	0.021	0.004
ACETONE	0.178	0.007	0.001	0.000
ALDEHYDES	0.443	0.017	0.008	0.001
AROMATIC HYDROCARBONS (C8-C10)	0.761	0.038	0.029	0.005
BENZENE	0.189	0.201	0.038	0.006
BUTANE (n-)	0.410	0.052	0.021	0.004
BUTANE (iso-)	0.315	0.003	0.001	0.000
BUTYL ACETATE (n-)	0.323	0.000	0.000	0.000
BUTYL ALCOHOL	0.196	0.042	0.008	0.001
CHLOROFORM	0.021	0.000	0.000	0.000
ETHANE	0.082	0.042	0.003	0.001
ETHYL BENZENE	0.593	0.004	0.003	0.000
ETHYLENE	1.000	0.001	0.001	0.000
HEPTANE (n-)	0.529	0.076	0.040	0.007
HEXANE (n-)	0.421	0.059	0.025	0.004
METHANE	0.007	0.244	0.002	0.000
METHANOL	0.123	0.000	0.000	0.000
METHYL ETHYL KETONE	0.473	0.020	0.010	0.002
METHYL ISOAMYL KETONE	0.326	0.071	0.023	0.004
METHYL ISOBUTYL KETONE	0.326	0.000	0.000	0.000
METHYL PROPYL KETONE	0.326	0.000	0.000	0.000
OCTANE (n-)	0.493	0.051	0.025	0.004
PENTANE (n-)	0.408	0.037	0.015	0.003
PROPANE	0.420	0.066	0.028	0.005
PROPYL ACETATE	0.218	0.000	0.000	0.000
PROPYLENE	1.030	0.000	0.000	0.000
TOLUENE	0.563	0.114	0.064	0.011
TRICHLOROETHANE	0.021	0.000	0.000	0.000
VOC	0.397	13.894	5.516	0.926
XYLENE	0.849	0.043	0.036	0.006

HUMAN HEALTH INHALATION TOXICITY IMPACT CALCULATIONS

HUMAN HEALTH INHALATION TOXICIT	H INHALATIO			
•	TOXICITY	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total HH Inh. Tox. Factored Score			20.499	1.612
Normalizing Score			12.715	
ACETALDEHYDE	7.44	0.040	0.301	0.024
ACETONE	0	0.007	0.000	0.000
ACETONITRILE	0	0.000	0.000	0.000
AMMONIA	5.7	0.001	0.005	0.000
ALDEHYDES	NA	0.017	0.000	0.000
ALUMINUM	15.6	0.000	0.006	0.000
AROMATIC HYDROCARBONS (C8-C10)	NA	0.038	0.000	0.000
BENZENE	NA	0.201	0.000	0.000
BUTANE (n-)	17.5	0.052	0.914	0.072
BUTANE (iso-)	NA	0.003	0.000	0.000
BUTYL ACETATE (n-)	8.49	0.000	0.000	0.000
BUTANOL	0.95	0.042	0.040	0.003
BUTYL CELLOSOLVE	12.29	0.000	0.000	0.000
BUTYLENE OXIDE, 1,2-	NA	0.000	0.000	0.000
CADMIUM	2.25		0.000	0.000
CARBON TETRACHLORIDE	7.06	0.000	0.000	0.000
CHLORINE	22.05	0.586	12.914	1.016
CHLOROFORM	2.57	0.000	0.000	0.000
CO	4.47	0.792	3.542	0.279
CO2	NA -	270.734	0.000	0.000
CUMENE	1.35	0.023	0.030	0.002
CYCLOPARAFFINS, C-7	NA	0.011	0.000	0.000
CYCLOPARAFFINS, C-8	NA	0.004	0.000	0.000
DICHLORODIFLUORMETHANE (CFC-	0	0.001	0.000	0.000
ETHANE	NA	0.042	0.000	0.000
ETHYL BENZENE	3.19	0.004	0.014	0.001
ETHYLENE	0	0.001	0.000	0.000
ETHYLENE CHLORIDE	0	0.000	0.000	0.000
ETHYLENE DICHLORIDE	7.32	0.000	0.000	0.000
FLUORINE	14.64	0.000	0.000	0.000
FORMALDEHYDE	15.6	0.019	0.295	0.023
HEAVY AROMATIC	NA	0.197	0.000	0.000
HEPTANE (n-)	0	0.076	0.000	0.000
HEXYL ACETATE	NA	0.000	0.000	0.000
HEXAMETHYLENE DIISOCYANTE	10		0.000	0.000
HEXANE (n-)	0	0.059	0.000	0.000
HYDROCHLORIC ACID	14.82	0.002	0.029	0.002
HYDROGEN CYANIDE	30	0.007	0.204	0.016
ISOBUTYRALDEHYDE	1.86	0.328	0.610	0.048
ISOPROPYL ALCOHOL	0	0.000	0.000	0.000
LEAD	NA	0.000	0.000	0.000
METHANE	NA	0.244	0.000	0.000
METHANOL	0	0.000	0.000	0.000

METHYL ETHYL KETONE	1.4	0.020	0.029	0.002
METHYL ISOAMYL KETONE	4	0.071	0.284	0 022
METHYL ISOBUTYL KETONE	2.33	0.000	0.000	0.000
METHYL PROPYL KETONE	NA	0.000	0.000	0.000
NAPTHA, NM&P	NA	0.000	0.000	0.000
NAPHTHALENE	26.45		0.000	0.000
NOX	NA	5.877	0.000	0.000
NITRIC ACID	26.4	0.000	0.000	0.000
NITROETHANE	NA	0.004	0.000	0.000
NITROPROPANE	14.4	0.001	0.009	0.001
OCTANE (n-)	0	0.051	0.000	0.000
ORGANIC ACIDS	NA	0.022	0.000	0.000
PENTANE (n-)	13.34	0.037	0.491	0.039
PHENOL	22.33	0.021	0.461	0.036
PHOSGENE	12.5		0.000	0.000
PHOSPHORIC ACID	30		0.000	0.000
PM	NA_	5.958	0.000	0.000
PM-10	NA	0.310	0.000	0.000
PROPANE	NA	0.066	0.000	0.000
PROPYL ACETATE	NA	0.000	0.000	0.000
TOLUENE	2.04	0.114	0.232	0.018
TRICHLOROEHTANE (METHYL CHLO	5 _. .6	0.000	0.000	0.000
VINYL CHLORIDE	18.52	0.000	0.000	0.000
VOC	NA	13.894	0.000	0.000
XYLENE	2.1	0.043	0.090	0.007

TERRESTRIAL TOXICITY IMPACT CALCULATIONS

CHEMICAL NAME	TERRESTRIAL TOXICITY INFACT GALC	FERRESTRIAL	-	-	
CHEMICAL NAME Factor Ib/FU Score 2.832 2.635 Total Terr. Tox. Factored Score Normalizing Score 1.075 ACETALDEHYDE 3.255 0.040 0.132 0.123 ACETONE 1.880 0.007 0.014 0.013 ACETONITRILE 0.610 0.005 0.003 0.003 ACETONITRILE 0.610 0.005 0.003 0.003 ALUMINUM 0.000 0.001 0.000 0.000 AMMONIA 9.030 0.001 0.008 0.007 ARSENIC 31,730 0.000 0.001 0.001 BENZENE 0.000 0.202 0.000 0.000 BUTYL ACETATE (n-) 0.000 0.000 0.000 0.000 BUTYL ACETATE (n-) 0.000 0.000 0.000 0.000 BUTYL CELLOSOLVE 7.590 0.000 0.000 0.000 BUTYL ENE OXIDE, 1,2- 1.610 0.000 0.000 0.000 CADMIUM 21,030 0.088 0.167 0.156 CARBON TETRACHLORIDE 1,710 0.000 0.000 0.000 CHLORINE 0.000 0.707 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHROMIUM, TRIVALENT 19,290 0.001 0.017 0.016 COBALT COMPOUNDS 20,960 0.000 0.000 0.000 COPPER COMPOUNDS 12,000 0.000 0.001 0.001 COPPER COMPOUNDS 12,000 0.000 0.001 0.001 CHTYLENE 0.000 0.001 0.001 0.001 DIETHYLENE 0.000 0.000 0.000 0.000 ETHYLENE 0.000 0.000 0.000 0.000 ETHYLENE 0.000 0.001 0.001 0.001 DIETHYLENE 0.000 0.000 0.000 0.000 ETHYLENE 0.		TOXICITY	Inventory		Normalized
Total Terr. Tox. Factored Score Normalizing Score 1.075		Equiv.	Value	Factored	Factored
Normalizing Score 3.255 0.040 0.132 0.123		Factor	lb/FU		
ACETALDEHYDE	Total Terr. Tox. Factored Score				2.635
ACETONE					
ACETONITRILE					
ALUMINUM O.000 O.001 O.000 O.000 AMMONIA 9.030 O.001 O.008 O.007 ARSENIC 31.730 O.000 O.001 O.001 O.001 DENZENE O.000 O.202 O.000 O.000 BUTYL ACETATE (n-) O.000 O.000 O.000 O.000 O.000 BUTYL ACCHATE (n-) O.000 CADMIUM 21.030 O.008 O.008 O.167 O.156 CARBON TETRACHLORIDE 1.710 O.000 O.000 O.000 CHLORINE O.000 O.000 O.000 O.000 CHLOROFORM O.160 O.000 O.000 O.000 CHROMIUM, TRIVALENT O.000 O.000 COPPER COMPOUNDS O.000 O.000 O.000 O.000 COPPER COMPOUNDS O.000 O	The same of the sa				
AMMONIA ARSENIC 31,730 0.000 0.001 0.001 BENZENE 0.000 0.000 0.000 0.000 0.000 BUTYL ACETATE (n-) 0.000 0.000 0.000 0.000 0.000 BUTYL ALCOHOL 6.180 0.042 0.258 0.240 BUTYL ELLOSOLVE 7.590 0.000 0.000 0.000 0.000 BUTYLENE OXIDE, 1,2- 1.610 0.000 0.000 0.000 0.000 CARBON TETRACHLORIDE 1.710 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 CHROMIUM, TRIVALENT 19.290 0.001 0.007 0.000 COPPER COMPOUNDS 20.960 COPPER COMPOUNDS 12.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 ETHYLENE DICHLORIDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) HEXAME (n-) HEXAMETYHYLENE DIISOCYANTE 1.610 0.000 0.0	A C IN THE STATE OF THE STATE O				
ARSENIC 31.730 0.000 0.001 0.001 BENZENE 0.000 0.202 0.000 0.000 BUTYL ACETATE (n-) 0.000 0.000 0.000 0.000 BUTYL ACCHOL 6.180 0.042 0.258 0.240 BUTYL CELLOSOLVE 7.590 0.000 0.000 0.000 BUTYLENE OXIDE, 1,2- 1.610 0.000 0.000 0.000 CADMIUM 21.030 0.008 0.167 0.156 CARBON TETRACHLORIDE 1.710 0.000 0.000 0.000 CHLORIDE 0.000 0.707 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHROMIUM, TRIVALENT 19.290 0.001 0.017 0.016 COBALT COMPOUNDS 20.960 0.000 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINETRIAMINE 5.270 0.000 0.000 ETHYLENE 0.000 0.000 0.000 0.000 ETHYLENE 0.000 0.000 0.000 0.000 ETHYLENE 10.CHLORIDE 4.890 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189	and the same of th				
BENZENE 0.000 0.202 0.000 0.000 BUTYL ACETATE (n-) 0.000 0.000 0.000 0.000 BUTYL ALCOHOL 6.180 0.042 0.258 0.240 BUTYL CELLOSOLVE 7.590 0.000 0.000 0.000 BUTYLENE OXIDE, 1,2- 1.610 0.000 0.000 0.000 CADMIUM 21,030 0.008 0.167 0.156 CARBON TETRACHLORIDE 1.710 0.000 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHROMIUM, TRIVALENT 19.290 0.001 0.017 0.016 COBALT COMPOUNDS 20.960 0.000 0.000 0.000 COPPER COMPOUNDS 12.000 0.000 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINET	The second secon				
BUTYL ACETATE (n-) 0.000 0.000 0.000 0.000 BUTYL ALCOHOL 6.180 0.042 0.258 0.240 BUTYL CELLOSOLVE 7.590 0.000 0.000 0.000 BUTYLENE OXIDE, 1,2- 1.610 0.000 0.000 0.000 CADMIUM 21.030 0.008 0.167 0.156 CARBON TETRACHLORIDE 1.710 0.000 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 COBALT COMPOUNDS 20.960 0.001 0.017 0.016 COBALT COMPOUNDS 12.000 0.000 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINETRIAMINE 5.270 0.000 0.000 0.000 ETHYLENE 0.000 0.004 0.000 0.000 ETHYLENE DIC					*
BUTYL ALCOHOL 6.180 0.042 0.258 0.240 BUTYL CELLOSOLVE 7.590 0.000 0.000 0.000 BUTYLENE OXIDE, 1,2- 1.610 0.000 0.000 0.000 CARBON TETRACHLORIDE 1.710 0.000 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHROMIUM, TRIVALENT 19.290 0.001 0.017 0.016 COBALT COMPOUNDS 20.960 0.000 0.000 0.000 COPPER COMPOUNDS 12.000 0.000 0.001 0.017 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINETRIAMINE 5.270 0.000 0.000 0.000 ETHYLENE 0.000 0.004 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 <td< td=""><td>·</td><td></td><td></td><td></td><td></td></td<>	·				
BUTYL CELLOSOLVE 7.590 0.000 0.000 0.000 BUTYLENE OXIDE, 1,2- 1.610 0.000 0.000 0.000 CADMIUM 21.030 0.008 0.167 0.156 CARBON TETRACHLORIDE 1.710 0.000 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHOROMIUM, TRIVALENT 19.290 0.001 0.017 0.016 COBALT COMPOUNDS 20.960 0.000 0.000 0.000 COPPER COMPOUNDS 12.000 0.000 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-)					
BUTYLENE OXIDE, 1,2- CADMIUM 21.030 0.008 0.167 0.156 CARBON TETRACHLORIDE 1.710 0.001 0.000 0.000 0.0	and the second of the second o				
CADMIUM 21.030 0.008 0.167 0.156 CARBON TETRACHLORIDE 1.710 0.000 0.000 0.000 CHLORINE 0.000 0.707 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHROMIUM, TRIVALENT 19.290 0.001 0.017 0.016 COBALT COMPOUNDS 20.960 0.000 0.000 0.000 COPPER COMPOUNDS 12.000 0.000 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINETRIAMINE 5.270 0.000 0.000 0.000 ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) <td>the state of the s</td> <td></td> <td></td> <td></td> <td></td>	the state of the s				
CARBON TETRACHLORIDE 1.710 0.000 0.000 0.000 CHLORINE 0.000 0.707 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHROMIUM, TRIVALENT 19.290 0.001 0.017 0.016 COBALT COMPOUNDS 20.960 0.000 0.000 0.000 COPPER COMPOUNDS 12.000 0.000 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FOR SOLIDS 0.000 0.000 0.000 0.000 0.000	A CONTRACTOR OF THE CONTRACTOR				
CHLORINE 0.000 0.707 0.000 0.000 CHLOROFORM 6.160 0.000 0.000 0.000 CHROMIUM, TRIVALENT 19.290 0.001 0.017 0.016 COBALT COMPOUNDS 20.960 0.000 0.001 0.001 COPPER COMPOUNDS 12.000 0.000 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DICHLORODIFLUORMETHANE 1.330 0.001 0.000 0.000 ETHYLAMINETRIAMINE 5.270 0.000 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000	The state of the s	21.030	0.008		
CHLOROFORM 6.160 0.000 0.000 0.000 CHROMIUM, TRIVALENT 19.290 0.001 0.017 0.016 COBALT COMPOUNDS 20.960 0.000 0.000 0.000 COPPER COMPOUNDS 12.000 0.000 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINETRIAMINE 5.270 0.000 0.000 0.000 ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 <td>CARBON TETRACHLORIDE</td> <td>1.710</td> <td>0.000</td> <td></td> <td></td>	CARBON TETRACHLORIDE	1.710	0.000		
CHROMIUM, TRIVALENT 19.290 0.001 0.017 0.016 COBALT COMPOUNDS 20.960 0.000 0.000 0.000 COPPER COMPOUNDS 12.000 0.000 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINETRIAMINE 5.270 0.000 0.000 0.000 ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.000 0.000 0.000 <td>CHLORINE</td> <td></td> <td></td> <td></td> <td></td>	CHLORINE				
COBALT COMPOUNDS 20.960 0.000 0.000 COPPER COMPOUNDS 12.000 0.000 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINETRIAMINE 5.270 0.000 0.000 0.000 ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 0.011 0.010	CHLOROFORM				
COPPER COMPOUNDS 12,000 0.000 0.001 0.001 CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINETRIAMINE 5.270 0.000 0.000 0.000 ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.009 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010	•		0.001		
CUMENE 2.710 0.023 0.061 0.057 DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINETRIAMINE 5.270 0.000 0.000 0.000 ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.0059 0.000 0.000 HEXYL ACETATE 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204					
DICHLORODIFLUORMETHANE 1.330 0.001 0.001 0.001 DIETHYLAMINETRIAMINE 5.270 0.000 0.000 ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.059 0.000 0.000 HEXYL ACETATE 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189					
DIETHYLAMINETRIAMINE 5.270 0.000 0.000 ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.009 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.059 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189					
ETHYL BENZENE 0.000 0.004 0.000 0.000 ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.059 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189			0.001		
ETHYLENE 0.000 0.001 0.000 0.000 ETHYLENE DICHLORIDE 4.890 0.000 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.059 0.000 0.000 HEXYL ACETATE 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.001 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189			0.004		
ETHYLENE DICHLORIDE 4.890 0.000 0.000 FGD SOLIDS 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.059 0.000 0.000 HEXYL ACETATE 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189					
FGD SOLIDS 0.000 0.000 0.000 0.000 FLY ASH 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.059 0.000 0.000 HEXYL ACETATE 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189			0.001		
FLY ASH 0.000 0.000 0.000 0.000 FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.059 0.000 0.000 HEXYL ACETATE 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189			0.000		
FORMALDEHYDE 12.600 0.019 0.238 0.221 HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.059 0.000 0.000 HEXYL ACETATE 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189					
HEPTANE (n-) 9.500 0.076 0.721 0.670 HEXANE (n-) 0.000 0.059 0.000 0.000 HEXYL ACETATE 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189	- · · -				
HEXANE (n-) 0.000 0.059 0.000 0.000 HEXYL ACETATE 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189					
HEXYL AČETATE 0.000 0.000 0.000 0.000 HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189	• •				
HEXAMETYHYLENE DIISOCYANTE 2.640 0.000 0.000 HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189	· ·				
HYDROCHLORIC ACID 5.740 0.002 0.011 0.010 HYDROGEN CYANIDE 30.000 0.007 0.204 0.189			0.000		
HYDROGEN CYANIDE 30.000 0.007 0.204 0.189			0.002		and the second s
ISOBUTYRALDEHYDE 1.860 0.328 0.610 0.567					
ISOPROPYL ALCOHOL 0.950 0.000 0.000 0.000					
KEROSENE 0.000 0.000 0.000 0.000					
LEAD 5.750 0.003 0.017 0.016					
METHYL ETHYL KETONE 1.860 0.020 0.038 0.035					
METHYL ISOAMYL KETONE 2.050 0.071 0.146 0.135					
METHYL ISOBUTYL KETONE 2.790 0.000 0.000 0.000					

METHYL PROPYL KETONE	4.570	0.000	0.000	0.000
NAPHTHALENE	3.170		0.000	0.000
NITRIC ACID	10.200	0.001	0.007	0.006
NITROPROPANE, 2-	8.400		0.000	0.000
PHENOL	7.600	0.021	0.157	0.146
PHOSPHORIC ACID	5.400		0.000	0.000
PROPYL ACETATE	0.870	0.000	0.000	0.000
PLUTONIUM (FISSILE & NONFISSILE)	0.000	0.000	0.000	0.000
SLAG	0.000	0.000	0.000	0.000
SULFURIC ACID	3.600	0.000	0.000	0.000
TOLUENE	0.000	0.114	0.000	0.000
TRICHLOROETHANE (METHYL CHLOR	0.000	0.000	0.000	0.000
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000
VINYL CHLORIDE	7.870	0.000	0.000	0.000
XYLENE	0.520	0.043	0.022	0.021
ZINC	0.000	0.000	0.000	0.000

AQUATIC TOXICITY IMPACT CALCULATIONS

Additio toxiciti iiii Act oncocni	AQUATIC			
	TOXICITY	inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Aquatic Tox. Factored Score		-	3,116	3.537
Normalizing Score			0.881	
ACETONITRILE	0.000		0.000	0.000
AMMONIA	21.850		0.000	0.000
ALUMINUM	0.000	0.001	0.000	0.000
ARSENIC	18.750	0.000	0.000	0.001
BENZENE	14.070	0.001	0.009	0.010
BORON	0.000	0.013	0.000	0.000
BUTYL ALCOHOL	0.000	0.042	0.000	0.000
BUTYLENE OXIDE, 1,2-	NA		0.000	0.000
CADMIUM	36.250	0.008	0.289	0.328
CARBON TETRACHLORIDE	1.200		0.000	0.000
CHLORIDE	NA	10.067	0.000	0.000
CHLORINE	22.500	0.121	2.727	3.095
CHLOROFORM	9.750		0.000	0.000
CHROMIUM, TRIVALENT	16.630	0.001	0.015	0.017
COBALT COMPOUNDS	31.750		0.000	0.000
COPPER COMPOUNDS	30.000	0.000	0.002	0.002
DICHLORODIFLUOROMETHANE (CFC-1	NA		0.000	0.000
HYDROCHLORIC ACID	13.860		0.000	0.000
IRON	25.000	0.000	0.000	0.000
LEAD	25.000	0.003	0.073	0.082
MERCURY	37.500	0.000	0.000	0.000
METHYL ISOAMYL KETONE	10.200		0.000	0.000
NAPHTHALENE	19.570		0.000	0.000
NITRIC ACID	15.600		0.000	0.000
NITROPROPANE, 2-	23.400		0.000	0.000
OIL & GREASE	NA	0.314	0.000	0.000
ORGANIC ACIDS	NA		0.000	0.000
PETROLEUM (CRUDE OIL)	NA	0.000	0.000	0.000
PHENOL	11.400	0.000	0.000	0.000
PHOSPHORIC ACID	11.400		0.000	0.000
SODIUM	NA	12.751	0.000	0.000
SULFIDE	NA	0.000	0.000	0.000
SULFURIC ACID	15.000	0.000	0.000	0.000
XYLENE	16.240		0.000	0.000
ZINC	20.300	0.000	0.001	0.002

LAND USE IMPACT CALCULATIONS

CHEMICAL NAME	LAND USE Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Land Use Score			251.882	1.585
Normalizing Score			161.615	
BOTTOM ASH	2.000	0.000	0.000	0.000
FGD SOLIDS	2.000	0.000	0.000	0.000
FLY ASH	2.000	0.000	0.000	0.000
HAZARDOUS WASTE	2.000	79.465	158.930	1.000
PLUTONIUM (FISSILE & NONFISSILE)	NA	0.000	0.000	0.000
SLAG	2.000	0.000	0.000	0.000
SOLID WASTE	1.500	61.968	92.951	0.585
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000

ALTERNATIVE GUN

CARCOPT GLOBAL	ACC Sanss	,	Weighting	Factored	Weighted Normalized	Baseline
			Factor	Score	ractored acore	Score -0 630
					₹0.254)
	.)		0.17983	0.799		
	GLBLWRM		0.11328	0.739	0.084	
	FSLFUELS		0.02855	0.929	0.027	
REGIONAL	NAL			•	40.174	
	ACIDDEP		0.06253	1.116		
	SMOG		0.13007	0.800	0.104	
	WTRUSE		0.01002		0.000	
LOCAL					0.202	- 2
	TOXICITY				0.165	
		HUMAN	0.06155	1.510	0.093	
		ENVTERR	0.02052	2.565	0.053	
		ENVAQ	0.02052	0.925	0.019	
D-	LANDUSE		0.02507	1.493	0.037	-

OZONE DEPLETION POTENTIAL IMPACT CALCULATIONS

	ODP	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total ODP Score			0.002	0.799
Normalizing Factor			0.003	
CARBON TETRACHLORIDE	1.080	0.002	0.002	0.732
DICHLORODIFLUOROMETHANE	1.000	0.000	0.000	0.000
TRICHLOROETHANE (METHYL CHLOROFORM	0.120	0.002	0.000	0.066

GLOBAL WARMING POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	GWP Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total GWP Score		-	221.802	0.739
Normalizing Score			300.337	
CARBON TETRACHLORIDE	1300	0.002	2.645	0.009
CO2	1	218.992	218.992	0.729
DICHLORODIFLUOROMETHANE	7100	0.000	0.000	0.000
TRICHLOROETHANE	100	0.002	0.165	0.001

RESOURCE DEPLETION IMPACT CALCULATIONS

	RESOURCE DEPLETION Equiv.	Inventory Value	Factored	Normalized Factored
CHEMICAL NAME	Factor	Ib/FU	Score	Score
Total Resource Depetion Score			10,233.632	0.929
Normalizing Score			11,010.628	
BAUXITE	4	83.964	335.857	0.031
CHROME OXIDE	2	3.288	6.575	0.001
COAL	3	0.211	0.632	0.000
COBALT OXIDE	3	0.724	2.173	0.000
IRON ORE	3	0.925	2.776	0.000
LIMESTONE	1	4.653	4.653	0.000
MAGNESIUM ORE	1	1.624	1.624	0.000
NATURAL GAS	4	439.669	1,758.676	0.160
PETROLEUM (CRUDE OIL)	4	2,007.554	8,030.216	0.729
PHOSPHATE ROCK	3	1.511	4.532	0.000
SALT (SODIUM CHLORIDE)	1	31.106	31.106	0.003
SILICÀ	1	9.861	9.861	0.001
SODA ASH	1	2.624	2.624	0.000
THALLIUM	4		0.000	0.000
TITANIUM	3	6.073	18.220	0.002
URANIUM (235, 236, 238)	3	0.000	0.000	0.000
WATER INPUT	NA	31,785.094	0.000	0.000
ZINC	4	6.027	24.108	0.002

ACIDIFICATION POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	Acid. Pot. Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Acid. Pot. Score			24.080	1.116
Normalizing Score			21.584	
AMMONIA	1.880	0.000	0.000	0.000
HYDROCHLORIC ACID	0.880	0.001	0.001	0.000
NOX	0.700	4.418	3.093	0.143
SOX	1.000	20.986	20.986	0.972

PHOTOCHEMICAL OXIDANT POTENTIAL IMPACT CALCULATIONS

PHOTOCHEMICAL OXIDANT POTENTIAL			42	A1
	POCP	Inventory	.	Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total POCP Score			4.768	0.800
Normalizing Factor			5.959	
ACETALDEHYDE	0.527	0.066	0.035	0.006
ACETONE	0.178	0.006	0.001	0.000
ALDEHYDES	0.443	0.014	0.006	0.001
AROMATIC HYDROCARBONS (C8-C10)	0.761	0.012	0.009	0.002
BENZENE	0.189	0.153	0.029	0.005
BUTANE (n-)	0.410	0.043	0.018	0.003
BUTANE (iso-)	0.315	0.002	0.001	0.000
BUTYL ACETATE (n-)	0.323	0.079	0.026	0.004
BUTYL ALCOHOL	0.196	0.018	0.003	0.001
CHLOROFORM	0.021	0.001	0.000	0.000
ETHANE	0.082	0.035	0.003	0.000
ETHYL BENZENE	0.593	0.002	0.001	0.000
ETHYLENE	1.000	0.002	0.002	0.000
HEPTANE (n-)	0.529	0.063	0.033	0.006
HEXANE (n-)	0.421	0.049	0.020	0.003
METHANE	0.007	0.201	0.001	0.000
METHANOL	0.123	0.000	0.000	0.000
METHYL ETHYL KETONE	0.473	0.040	0.019	0.003
METHYL ISOAMYL KETONE	0.326	0.288	0.094	0.016
METHYL ISOBUTYL KETONE	0.326	0.014	0.005	0.001
METHYL PROPYL KETONE	0.326	0.000	0.000	0.000
OCTANE (n-)	0.493	0.042	0.021	0.003
PENTANE (n-)	0.408	0.030	0.012	0.002
PROPANE	0.420	0.054	0.023	0.004
PROPYL ACETATE	0.218	0.000	0.000	0.000
PROPYLENE	1.030	0.000	0.000	0.000
TOLUENE	0.563	0.098	0.055	0.009
TRICHLOROETHANE	0.021	0.002	0.000	0.000
VOC	0.397	10.892	4.324	0.726
XYLENE	0.849	0.032	0.027	0.005

HUMAN HEALTH INHALATION TOXICITY IMPACT CALCULATIONS

HH INHALATION							
	TOXICITY	Inventory		Normalized			
	Equiv.	Value	Factored	Factored			
CHEMICAL NAME	Factor	lb/FU	Score	Score			
Total HH Inh. Tox. Factored Score			19.203	1.510			
Normalizing Score			12.715				
ACETALDEHYDE	7.44	0.066	0.493	0.039			
ACETONE	0	0.006	0.000	0.000			
ACETONITRILE	0	0.000	0.000	0.000			
AMMONIA	5.7	0.000	0.000	0.000			
ALDEHYDES	NA	0.014	0.000	0.000			
ALUMINUM	15.6	0.002	0.033	0.003			
AROMATIC HYDROCARBONS (C8-C10)	NA	0.012	0.000	0.000			
BENZENE	NA	0.153	0.000	0.000			
BUTANE (n-)	17.5	0.043	0.753	0.059			
BUTANE (iso-)	NA	0.002	0.000	0.000			
BUTYL ACETATE (n-)	8.49	0.079	0.674	0.053			
BUTANOL	0.95	0.018	0.017	0.001			
BUTYL CELLOSOLVE	12.29	0.000	0.000	0.000			
BUTYLENE OXIDE, 1,2-	NA	0.000	0.000	0.000			
CADMIUM	2.25		0.000	0.000			
CARBON TETRACHLORIDE	7.06	0.002	0.014	0.001			
CHLORINE	22.05	0.416	9.180	0.722			
CHLOROFORM	2.57	0.001	0.002	0.000			
CO	4.47	1.007	4.502	0.354			
CO2	NA	218.992	0.000	0.000			
CUMENE	1.35	0.019	0.026	0.002			
CYCLOPARAFFINS, C-7	NA	0.009	0.000	0.000			
CYCLOPARAFFINS, C-8	NA	0.003	0.000	0.000			
DICHLORODIFLUOROMETHANE (CFC	O	0.000	0.000	0.000			
ETHANE	NA	0.035	0.000	0.000			
ETHYL BENZENE	3.19	0.002	0.005	0.000			
ETHYLENE	0	0.002	0.000	0.000			
ETHYLENE CHLORIDE	Ö	0.002	0.000	0.000			
ETHYLENE DICHLORIDE	7.32	0.006	0.041	0.003			
FLUORINE	14.64	0.020	0.296	0.003			
FORMALDEHYDE	15.6	0.015	0.238	0.023			
HEAVY AROMATIC	NA	0.142	0.000	0.000			
HEPTANE (n-)	0	0.063	0.000				
HEXYL ACETATE	NA NA	0.035	0.000	0.000			
HÉXAMETHYLENE DIISOCYANTE	10	0.033	0.000	0.000			
HEXANE (n-)	0	0.049		0.000			
HYDROCHLORIC ACID	14.82	0.049	0.000	0.000			
HYDROGEN CYANIDE	30	0.001	0.014 0.146	0.001			
ISOBUTYRALDEHYDE	1.86	0.005 0.257	0.146	0.011			
ISOPROPYL ALCOHOL	0.1	0.257	0.478	0.038			
LEAD	NA NA		0.000	0.000			
METHANE	NA NA	0.001	0.000	0.000			
	NA 0	0.201	0.000	0.000			
METHANOL	U	0.000	0.000	0.000			

METHYL ETHYL KETONE	1.4	0.040	0.055	0.004
METHYL ISOAMYL KETONE	4	0.288	1.151	0.090
METHYL ISOBUTYL KETONE	2.33	0.014	0.033	0.003
METHYL PROPYL KETONE	NA	0.000	0.000	0.000
NAPTHA, NM&P	NA	0.034	0.000	0.000
NAPHTHALENE	26.45		0.000	0.000
NOX	NA	4.418	0.000	0.000
NITRIC ACID	26.4	0.000	0.000	0.000
NITROETHANE	NA	0.000	0.000	0.000
NITROPROPANE	14.4	0.000	0.000	0.000
OCTANE (n-)	0	0.042	0.000	0.000
ORGANIC ACIDS	NA	0.018	0.000	0.000
PENTANE (n-)	13.34	0.030	0.404	0.032
PHENOL	22.33	0.016	0.349	0.027
PHOSGENE	12.5		0.000	0.000
PHOSPHORIC ACID	. 30		0.000	0.000
PM	NA	4.425	0.000	0.000
PM-10	NA	0.292	0.000	0.000
PROPANE	NΑ	0.054	0.000	0.000
PROPYL ACETATE	NA	0.000	0.000	0.000
TOLUENE	2.04	0.098	0.201	0.016
TRICHLOROEHTANE (METHYL CHLO	5.6	0.002	0.009	0.001
VINYL CHLORIDE	18.52	0.001	0.019	0.002
VOC	NA	10.892	0.000	0.000
XYLENE	2.1	0.032	0.067	0.005

TERRESTRIAL TOXICITY IMPACT CALCULATIONS

T	ERRESTRIAL			
·	TOXICITY	- Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Terr. Tox. Factored Score			2.757	2.565
Normalizing Score			1.075	2.000
ACETALDEHYDE	3.255	0.066	0.216	0.200
ACETONE	1.860	0.006	0.011	0.011
ACETONITRILE	0.610	0.000	0.000	0.000
ALUMINUM	0.000	0.000	0.000	0.000
AMMONIA	9.030	0.000	0.000	0.000
ARSENIC	31.730	0.000	0.001	0.001
BENZENE	0.000	0.154	0.000	0.000
BUTYL ACETATE (n-)	0.000	0.079	0.000	0.000
BUTYL ALCOHOL	6.180	0.018	0.110	0.103
BUTYL CELLOSOLVE	7.590	0.000	0.000	0.000
BUTYLENE OXIDE, 1,2-	1.610	0.000	0.000	0.000
CADMIUM	21.030	0.004	0.076	0.070
CARBON TETRACHLORIDE	1.710	0.002	0.003	0.003
CHLORINE	0.000	0.445	0.000	0.000
CHLOROFORM	6.160	0.001	0.006	0.006
CHROMIUM, TRIVALENT	19.290	0.000	0.008	0.007
COBALT COMPOUNDS	20.960	0.000	0.000	0.000
COPPER COMPOUNDS	12.000	0.000	0.000	0.000
CUMENE	2.710	0.019	0.052	0.049
DICHLORODIFLUOROMETHANE	1.330	0.000	0.000	0.000
DIETHYLAMINETRIAMINE	5.270		0.000	0.000
ETHYL BENZENE	0.000	0.002	0.000	0.000
ETHYLENE	0.000	0.002	0.000	0.000
ETHYLENE DICHLORIDE	4.890		0.000	0.000
FGD SOLIDS	0.000	0.000	0.000	0.000
FLY ASH	0.000	0.000	0.000	0.000
FORMALDEHYDE	12.600	0.015	0.192	0.179
HEPTANE (n-)	9.500	0.063	0.594	0.552
HEXANE (n-)	0.000	0.049	0.000	0.000
HEXYL ACETATE	0.000	0.035	0.000	0.000
HEXAMETYHYLENE DIISOCYANTE	2.640		0.000	0.000
HYDROCHLORIC ACID	5.740	0.001	0.005	0.005
HYDROGEN CYANIDE	30.000	0.005	0.146	0.136
IRON	0.000	0.000	0.000	0.000
ISOBUTYRALDEHYDE	1.860	0.257	0.478	0.445
ISOPROPYL ALCOHOL	0.950	0.000	0.000	0.000
KEROSENE	0.000	0.000	0.000	0.000
LEAD	5.750	0.002	0.011	0.010
METHYL ETHYL KETONE	1.860	0.040	0.074	0.069
METHYL ISOAMYL KETONE	2.050	0.288	0.590	0.549
METHYL ISOBUTYL KETONE	2.790	0.014	0.040	0.037

METHYL PROPYL KETONE	4.570	0.000	0.000	0.000
NAPHTHALENE	3.170		0.000	0.000
NITRIC ACID	10.200	0.000	0.000	0.000
NITROPROPANE, 2-	8.400		0.000	0.000
PHENOL	7.600	0.016	0.119	0.110
PHOSPHORIC ACID	5.400		0.000	0.000
PROPYL ACETATE	0.870	0.000	0.000	0.000
PLUTONIUM (FISSILE & NONFISSILE)	0.000	0.000	0.000	0.000
SLAG	0.000	0.000	0.000	0.000
SULFURIC ACID	3.600	0.000	0.000	0.000
TOLUENE	0.000	0.098	0.000	0.000
TRICHLOROETHANE (METHYL CHLOR	0.000	0.002	0.000	0.000
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000
VINYL CHLORIDE	7.870	0.001	0.008	0.008
XYLENE	0.520	0.032	0.017	0.016
ZINC	0.000	0.000	0.000	0.000

AQUATIC TOXICITY IMPACT CALCULATIONS

AGOATIO TOXIOTT IMI AGT GAEGGEAT	AQUATIC			
	TOXICITY	Inventory		Normalized
	Equiv.	Value ´	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Aquatic Tox. Factored Score	•	•	0.815	0.925
Normalizing Score			0.881	
ACETONITRILE	0.000		0.000	0.000
AMMONIA	21.850		0.000	0.000
ALUMINUM	0.000	0.000	0.000	0.000
ARSENIC	18.750	0.000	0.000	0.000
BENZENE	14.070	0.001	0.007	0.008
BORON	0.000	0.011	0.000	0.000
BUTYL ALCOHOL	0.000	0.018	0.000	0.000
BUTYLENE OXIDE, 1,2-	NA		0.000	0.000
CADMIUM	36.250	0.004	0.130	0.148
CARBON TETRACHLORIDE	1.200		0.000	0.000
CHLORIDE	NA	8.296	0.000	0.000
CHLORINE	22.500	0.028	0.636	0.722
CHLOROFORM	9.750		0.000	0.000
CHROMIUM, TRIVALENT	16.630	0.000	0.007	0.008
COBALT COMPOUNDS	31.750		0.000	0.000
COPPER COMPOUNDS	30.000	0.000	0.001	0.001
DICHLORODIFLUOROMETHANE (CFC-1	NA		0.000	0.000
HYDROCHLORIC ACID	13.860		0.000	0.000
IRON	25.000	0.000	0.000	0.000
LEAD	25.000	0.001	0.032	0.036
MERCURY	37.500	0.000	0.000	0.000
METHYL ISOAMYL KETONE	10.200		0.000	0.000
NAPHTHALENE	19.570		0.000	0.000
NITRIC ACID	15.600		0.000	0.000
NITROPROPANE, 2-	23.400		0.000	0.000
OIL & GREASE	NA	0.259	0.000	0.000
ORGANIC ACIDS	NA		0.000	0.000
PETROLEUM (CRUDE OIL)	NA	0.000	0.000	0.000
PHENOL	11.400	0.000	0.000	0.000
PHOSPHORIC ACID	11.400		0.000	0.000
SODIUM	NA	10.508	0.000	0.000
SULFIDE	NA	0.000	0.000	0.000
SULFURIC ACID	15.000	0.000	0.000	0.000
XYLENE	16.240		0.000	0.000
ZINC	20.300	0.000	0.001	0.001

LAND USE IMPACT CALCULATIONS

CHEMICAL NAME	LAND USE Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Land Use Score			239.296	1.493
Normalizing Score			161.615	
BOTTOM ASH	2.000	0.000	0 000	0.000
FGD SOLIDS	2.000	0.000	0.000	0.000
FLY ASH	2.000	0.000	0.000	0.000
HAZARDOUS WASTE	2.000	80.163	160.327	1.000
PLUTONIUM (FISSILE & NONFISSILE)	NA	0.000	0.000	0.000
SLAG	2.000	0.000	0.000	0.000
SOLID WASTE	1.500	52.646	78.970	0.493
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000

ALTERNATIVE PRIMER AND GUN

	Scale	lssues>	AHP Weighting Factor	Normalized Factored Score	Weighted Normalized Factored Score	Baseline Score
CARCOPT	GLOBAL				84.0	48
			0.17983	0.265	0.048	
		GLBLWRM	0.11328	0.677	0.077	
		FSLFUELS	0.02855	0.827	0.024	
	REGIONAL				* 0.162	62
		ACIDDEP	0.06253	1.098	690.0	
		SMOG	0.13007	0.721	0.094	
		WTRUSE	0.01002		0.000	
	LOCAL			•	0.201	
		TOXICITY		• .	0.164	
		HUMAN	0.06155	1.172	0.072	
		ENVTERR	0.02052	1.906	0.039	<u>.</u> .
		ENVAQ	0.02052	2.554	0.052	-
		LANDUSE	0.02507	1.497	0.038	

OZONE DEPLETION POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	ODP Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total ODP Score			0.001	0.265
Normalizing Factor			0.003	
CARBON TETRACHLORIDE	1.080	0.000	0.000	0.000
DICHLORODIFLUOROMETHANE	1.000	0.001	0.001	0.265
TRICHLOROETHANE (METHYL CHLOROFORM	0.120	0.000	0.000	0.000

GLOBAL WARMING POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	GWP Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total GWP Score			203.264	0.677
Normalizing Score			300.337	
CARBON TETRACHLORIDE	1300	0.000	0.000	0.000
CO2	1	197.618	197.618	0.658
DICHLORODIFLUOROMETHANE	7100	0.001	5.646	0.019
TRICHLOROETHANE	100	0.000	0.000	0.000

RESOURCE DEPLETION IMPACT CALCULATIONS

	RESOURCE			
	DEPLETION	inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Resource Depetion Score			9,105.511	0.827
Normalizing Score			11,010.628	
BAUXITE	4	83.964	335.857	0.031
CHROME OXIDE	2	3.288	6.575	0.001
COAL	3	0.000	0.000	0.000
COBALT OXIDE	3	0.724	2.173	0.000
IRON ORE	3	0.968	2.905	0.000
LIMESTONE	1	4.653	4.653	0.000
MAGNESIUM ORE	1	1.624	1.624	0.000
NATURAL GAS	4	390.599	1,562.395	0.142
PETROLEUM (CRUDE OIL)	4	1,778.953	7,115.812	0.646
PHOSPHATE ROCK	3	0.000	0.000	0.000
SALT (SODIUM CHLORIDE)	1	31.384	31.384	0.003
SILICA	1	9.658	9.658	0.001
SODA ASH	1	2.624	2.624	0.000
THALLIUM	4		0.000	0.000
TITANIUM	3	9.950	29.851	0.003
URANIUM (235, 236, 238)	3	0.000	0.000	0.000
WATER INPUT	NA	29,269.170	0.000	0.000
ZINC	4	0.000	0.000	0.000

ACIDIFICATION POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	Acid. Pot. Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Acid. Pot. Score			23.696	1.098
Normalizing Score			21.584	
AMMONIA	1.880	0.001	0.001	0.000
HYDROCHLORIC ACID	0.880	0.001	0.001	0.000
NOX	0.700	4.258	2.981	0.138
SOX	1.000	20.713	20.713	0.960

PHOTOCHEMICAL OXIDANT POTENTIAL IMPACT CALCULATIONS

	POCP	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total POCP Score		- 10	4.294	0.721
Normalizing Factor			5.959	
ACETALDEHYDE	0.527	0.031	0.017	0.003
ACETONE	0.178	0.005	0.001	0.000
ALDEHYDES	0.443	0.012	0.006	0.001
AROMATIC HYDROCARBONS (C8-C10)	0.761	0.020	0.015	0.003
BENZENE	0.189	0.151	0.029	0.005
BUTANE (n-)	0.410	0.038	0.016	0.003
BUTANE (iso-)	0.315	0.002	0.001	0.000
BUTYL ACETATE (n-)	0.323	0.000	0.000	0.000
BUTYL ALCOHOL	0.196	0.022	0.004	0.001
CHLOROFORM	0.021	0.000	0.000	0.000
ETHANE	0.082	0.031	0.003	0.000
ETHYL BENZENE	0.593	0.003	0.002	0.000
ETHYLENE	1.000	0.000	0.000	0.000
HEPTANE (n-)	0.529	0.055	0.029	0.005
HEXANE (n-)	0.421	0.043	0.018	0.003
METHANE	0.007	0.178	0.001	0.000
METHANOL	0.123	0.000	0.000	0.000
METHYL ETHYL KETONE	0.473	0.016	0.008	0.001
METHYL ISOAMYL KETONE	0.326	0.051	0.017	0.003
METHYL ISOBUTYL KETONE	0.326	0.000	0.000	0.000
METHYL PROPYL KETONE	0.326	0.000	0.000	0.000
OCTANE (n-)	0.493	0.037	0.018	0.003
PENTANE (n-)	0.408	0.027	0.011	0.002
PROPANE	0.420	0.048	0.020	0.003
PROPYL ACETATE	0.218	0.000	0.000	0.000
PROPYLENE	1.030	0.000	0.000	0.000
TOLUENE	0.563	0.088	0.050	0.008
TRICHLOROETHANE	0.021	0.000	0.000	0.000
VOC	0.397	10.085	4.004	0.672
XYLENE	0.849	0.031	0.026	0.004

HUMAN HEALTH INHALATION TOXICITY IMPACT CALCULATIONS

HUMAN HEALTH INHALATION TOXICIT	H INHALATIO			
П	TOXICITY	Inventory		Normalized
	Equiv.	Value	Factored	Factored
OUTMON NAME	Factor	Ib/FU	Score	Score
CHEMICAL NAME	racioi	IBIFO	14.900	1.172
Total HH Inh. Tox. Factored Score			12.715	1.172
Normalizing Score	7 44	0.004		0.019
ACETALDEHYDE	7.44	0.031	0.234	0.018
ACETONE	0	0.005	0.000	0.000
ACETONITRILE	0	0.000	0.000	0.000
AMMONIA	5.7	0.001	0.004	0.000
ALDEHYDES	NA	0.012	0.000	0.000
ALUMINUM	15.6	0.000	0.000	0.000
AROMATIC HYDROCARBONS (C8-C10)	NA	0.020	0.000	0.000
BENZENE	NA	0.151	0.000	0.000
BUTANE (n-)	17.5	0.038	0.667	0.052
BUTANE (iso-)	NA	0.002	0.000	0.000
BUTYL ACETATE (n-)	8.49	0.000	0.000	0.000
BUTANOL	0.95	0.022	0.021	0.002
BUTYL CELLOSOLVE	12.29	0.000	0.000	0.000
BUTYLENE OXIDE, 1,2-	NA	0.000	0.000	0.000
CADMIUM	2.25	0.000	0.000	0.000
CARBON TETRACHLORIDE	7.06	0.000	0.000	0.000
CHLORINE	22.05	0.423	9.324	0.733
CHLOROFORM	2.57	0.000	0.000	0.000
CO	4.47	0.579	2.586	0.203
CO2	NA	197.618	0.000	0.000
	1.35	0.016	0.022	0.002
CUMENE CYCLORARAEEINS C 7	NA	0.008	0.000	0.000
CYCLOPARAFFINS, C-7	NA	0.003	0.000	0.000
CYCLOPARAFFINS, C-8	0	0.003	0.000	0.000
DICHLORODIFLUORMETHANE (CFC-	NA NA	0.031	0.000	0.000
ETHANE		0.003	0.000	0.001
ETHYL BENZENE	3.19	0.003	0.000	0.000
ETHYLENE	0		0.000	0.000
ETHYLENE CHLORIDE	0	0.000		0.000
ETHYLENE DICHLORIDE	7.32	0.000	0.000	
FLUORINE	14.64	0.000	0.000	0.000
FORMALDEHYDE	15.6	0.014	0.215	0.017
HEAVY AROMATIC	NA	0.142	0.000	0.000
HEPTANE (n-)	0	0.055	0.000	0.000
HEXYL ACETATE	NA	0.000	0.000	0.000
HEXAMETHYLENE DIISOCYANTE	10		0.000	0.000
HEXANE (n-)	0	0.043	0.000	0.000
HYDROCHLORIC ACID	14.82	0.001	0.021	0.002
HYDROGEN CYANIDE	30	0.005	0.147	0.012
ISOBUTYRALDEHYDE	1.86	0.257	0.478	0.038
ISOPROPYL ALCOHOL	0	0.000	0.000	0.000
LEAD	NA	0.000	0.000	0.000
METHANE	NA	0.178	0.000	0.000
METHANOL	0	0.000	0.000	0.000

METLING ETLING METANIC	4.4	0.010	0.000	0.000
METHYL ETHYL KETONE	1.4	0.016	0.022	0.002
METHYL ISOAMYL KETONE	4	0.051	0.205	0.016
METHYL ISOBUTYL KETONE	2.33	0.000	0.000	0.000
METHYL PROPYL KETONE	NA	0.000	0.000	0.000
NAPTHA, NM&P	NA	0.000	0.000	0.000
NAPHTHALENE	26.45		0.000	0.000
NOX	NA	4.258	0.000	0.000
NITRIC ACID	26.4	0.000	0.000	0.000
NITROETHANE	NA	0.002	0.000	0.000
NITROPROPANE	14.4	0.000	0.006	0.000
OCTANE (n-)	0	0.037	0.000	0.000
ORGANIC ACIDS	NA	0.016	0.000	0.000
PENTANE (n-)	13.34	0.027	0.358	0.028
PHENOL	22.33	0.015	0.333	0.026
PHOSGENE	12.5		0.000	0.000
PHOSPHORIC ACID	30		0.000	0.000
PM	NΑ	4.390	0.000	0.000
PM-10	NA	0.292	0.000	0.000
PROPANE	NA	0.048	0.000	0.000
PROPYL ACETATE	NA	0.000	0.000	0.000
TOLUENE	2.04	0.088	0.180	0.014
TRICHLOROEHTANE (METHYL CHLO	5.6	0.000	0.000	0.000
VINYL CHLORIDE .	18.52	0.000	0.000	0.000
VOC	NA	10.085	0.000	0.000
XYLENE	2.1	0.031	0.065	0.005
VOC	NA	10.085	0.000	0.000

TERRESTRIAL TOXICITY IMPACT CALCULATIONS

TERRESTRIAL TOXISTT INIT ACT CALC	ERRESTRIAL			
	TOXICITY	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Terr. Tox. Factored Score			2.049	1 906
Normalizing Score			1.075	
ACETALDEHYDE	3.255	0.031	0.103	0.095
ACETONE	1.860	0.005	0.010	0.009
ACETONITRILE	0.610	0.003	0.002	0.002
ALUMINUM	0.000	0.001	0.000	0.000
AMMONIA	9.030	0.001	0.006	0.005
ARSENIC	31.730	0.000	0.001	0.001
BENZENE	0.000	0.152	0.000	0.000
BUTYL ACETATE (n-)	0.000	0.000	0.000	0.000
BUTYL ALCOHOL	6.180	0.022	0.134	0.125
BUTYL CELLOSOLVE	7.590	0.000	0.000	0.000
BUTYLENE OXIDE, 1,2-	1.610	0.000	0.000	0.000
CADMIUM	21.030	0.006	0.121	0.112
CARBON TETRACHLORIDE	1.710	0.000	0.000	0.000
CHLORINE	0.000	0.510	0.000	0.000
CHLOROFORM	6.160	0.000	0.000	0.000
CHROMIUM, TRIVALENT	19.290	0.001	0.012	0.012
COBALT COMPOUNDS	20.960		0.000	0.000
COPPER COMPOUNDS	12.000	0.000	0.001	0.001
CUMENE	2.710	0.016	0.044	0.041
DICHLORODIFLUORMETHANE	1.330	0.001	0.001	0.001
DIETHYLAMINETRIAMINE	5.270	0.000	0.000	0.000
ETHYL BENZENE	0.000	0.003	0.000	0.000
ETHYLENE PICH OPIDE	0.000	0.000	0.000	0.000
ETHYLENE DICHLORIDE FGD SOLIDS	4.890	0.000	0.000	0.000
	0.000	0.000	0.000	0.000
FLY ASH	0.000	0.000	0.000	0.000
FORMALDEHYDE HEPTANE (n-)	12.600 9.500	0.014	0.174	0.162
HEXANE (n-)	0.000	0.055	0.526	0.490
HEXYL ACETATE	0.000	0.043 0.000	0.000	0.000
HEXAMETYHYLENE DIISOCYANTE	2.640	0.000	0.000	0.000
HYDROCHLORIC ACID	5.740	0.001	0.000 0.008	0.000
HYDROGEN CYANIDE	30.000	0.001 0.005	0.006	0.007
IRON	0.000	0.000	0.147	0.137 0.000
ISOBUTYRALDEHYDE	1.860	0.000	0.478	0.445
ISOPROPYL ALCOHOL	0.950	0.000	0.000	0.000
KEROSENE	0.000	0.000	0.000	0.000
LEAD	5.750	0.000	0.000	0.000
METHYL ETHYL KETONE	1.860	0.002	0.030	0.028
METHYL ISOAMYL KETONE	2.050	0.010	0.030	0.028
METHYL ISOBUTYL KETONE	2.790	0.000	0.000	0.000
WE THE RODOTTE NETONE	2.700	0.000	0.000	0.000

METHYL PROPYL KETONE	4.570	0.000	0.000	0.000
NAPHTHALENE	3.170		0.000	0.000
NITRIC ACID	10.200	0.000	0.005	0.004
NITROPROPANE, 2-	8.400		0.000	0.000
PHENOL	7.600	0.015	0.113	0.105
PHOSPHORIC ACID	5.400		0.000	0.000
PROPYL ACETATE	0.870	0.000	0.000	0.000
PLUTONIUM (FISSILE & NONFISSILE)	0.000	0.000	0.000	0.000
SLAG	0.000	0.000	0.000	0.000
SULFURIC ACID	3.600	0.000	0.000	0.000
TOLUENE	0.000	0.088	0.000	0.000
TRICHLOROETHANE (METHYL CHLOR	0.000	0.000	0.000	0.000
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000
VINYL CHLORIDE	7.870	0.000	0.000	0.000
XYLENE	0.520	0.031	0.016	0.015
ZINC	0.000	0.000	0.000	0.000

AQUATIC TOXICITY IMPACT CALCULATIONS

AQUATIC TOXICITY IMPACT CALCULAT	AQUATIC			
	TOXICITY	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Aquatic Tox. Factored Score			2.250	2.554
Normalizing Score			0.881	
ACETONITRILE	0.000		0.000	0.000
AMMONIA	21.850		0.000	0.000
ALUMINUM	0.000	0.001	0.000	0.000
ARSENIC	18.750	0.000	0.000	0.000
BENZENE	14.070	0.000	0.006	0.007
BORON	0.000	0.010	0.000	0.000
BUTYL ALCOHOL	0.000	0.022	0.000	0.000
BUTYLENE OXIDE, 1,2-	NA		0.000	0.000
CADMIUM	36.250	0.006	0.208	0.237
CARBON TETRACHLORIDE	1.200		0.000	0.000
CHLORIDE	NA	7.351	0.000	0.000
CHLORINE	22.500	0.087	1.969	2.235
CHLOROFORM	9.750		0.000	0.000
CHROMIUM, TRIVALENT	16.630	0.001	0.011	0.012
COBALT COMPOUNDS	31.750		0.000	0.000
COPPER COMPOUNDS	30.000	0.000	0.001	0.002
DICHLORODIFLUOROMETHANE (CFC-1	NA		0.000	0.000
HYDROCHLORIC ACID	13.860		0.000	0.000
IRON	25.000	0.000	0.000	0.000
LEAD	25.000	0.002	0.052	0.060
MERCURY	37.500	0.000	0.000	0.000
METHYL ISOAMYL KETONE	10.200		0.000	0.000
NAPHTHALENE	19.570		0.000	0.000
NITRIC ACID	15.600		0.000	0.000
NITROPROPANE, 2-	23.400		0.000	0.000
OIL & GREASE	NA	0.230	0.000	0.000
ORGANIC ACIDS	NA		0.000	0.000
PETROLEUM (CRUDE OIL)	NA	0.000	0.000	0.000
PHENOL	11.400	0.000	0.000	0.000
PHOSPHORIC ACID	11.400		0.000	0.000
SODIUM	NA	9.312	0.000	0.000
SULFIDE	NA 15.000	0.000	0.000	0.000
SULFURIC ACID	15.000	0.000	0.000	0.000
XYLENE	16.240	0.000	0.000	0.000
ZINC	20.300	0.000	0.001	0.001

LAND USE IMPACT CALCULATIONS

CHEMICAL NAME	LAND USE Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Land Use Score			237.170	1.497
Normalizing Score			161.615	
BOTTOM ASH	2,000	0.000	0.000	0.000
FGD SOLIDS	2.000	0.000	0.000	0.000
FLY ASH	2.000	0.000	0.000	0.000
HAZARDOUS WASTE	2.000	79.194	158.388	1.000
PLUTONIUM (FISSILE & NONFISSILE)	NA	0.000	0.000	0.000
SLAG	2.000	0.000	0.000	0.000
SOLID WASTE	1.500	52.521	78.782	0.497
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000

ALTERNATIVE THINNER

u	2
ž	
7	ς
₹	4
Ē	_
d	ľ
ATION	1
Ξ	ş
7	ί,
•	1
-	2
۶	Ç
L)
-	
4	É
C	7
Z	
5	-
2	3
-	2
•	ξ
2	>
Ĺ	
5	•
ALL IAV TOAGER T	2
5	ŧ,
8	Ļ,
2	7
7	=
ш	U
-	
ī	٩
:	֓֡֡֡֜֜֜֜֡֡֜֜֜֜֜֜֡֡֡֜֜֜֜֜֡֡֡֜֜֜֡֡
中国とくろく	3
(2
•	

		AHP Weighting	Normalized Factored	Weighte	Weighted Normalized	Baseline
Scale	Issues>	Factor	Score	Fact	Factored Score	Score
CARCOFI GLOBAL				`	0.334	
	ODP	0.17983	1.106		·	
	GLBLWRM	0.11328	0.905		0.103	
	FSLFUELS	0.02855	1.133		0.032	
REGIONAL				<i>.</i> • `	₩ 0.209	••
	ACIDDEP	0.06253	1.187		0.074	-
	SMOG	0.13007	1.035		0.135	•
	WTRUSE	0.01002		•	000.0	
LOCAL				·	0.249	•
	TOXICITY				0.209	•
	HUMAN	0.06155	1.999	0.123		
	ENVTERR	0.02052	2.923	090.0		
	ENVAQ	0.02052	1.279	0.026		
D	LANDUSE	0.02507	1.577		0.040	

OZONE DEPLETION POTENTIAL IMPACT CALCULATIONS

	ODP Equiv.	inventory Value	Factored	Normalized Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total ODP Score	·		0.003	1.090
Normalizing Factor			0.003	
CARBON TETRACHLORIDE	1.080	0.003	0.003	1.000
DICHLORODIFLUOROMETHANE	1.000	0.000	0.000	0.000
TRICHLOROETHANE (METHYL CHLOROFORM	0.120	0.002	0.000	0.090

GLOBAL WARMING POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	GWP Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total GWP Score			271.890	0.905
Normalizing Score			300.337	
CARBON TETRACHLORIDE	1300	0.003	3.663	0.012
CO2	1	267.997	267.997	0.892
DICHLORODIFLUOROMETHANE	7100	0.000	0.000	0.000
TRICHLOROETHANE	100	0.002	0.229	0.001

RESOURCE DEPLETION IMPACT CALCULATIONS

	RESOURCE			
/	DEPLETION	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Resource Depetion Score			12,479.242	1.133
Normalizing Score			11,010.628	
BAUXITE	4	83.964	335.857	0.031
CHROME OXIDE	2	4.553	9.107	0.001
COAL	3	0.292	0.875	0.000
COBALT OXIDE	3	1.003	3.010	0.000
IRON ORE	3	1.282	3.845	0.000
LIMESTONE	1	4.653	4.653	0.000
MAGNESIUM ORE	1	2.249	2.249	0.000
NATURAL GAS	4	549.204	2,196.817	0.200
PETROLEUM (CRUDE OIL)	4	2,449.640	9,798.561	0.890
PHOSPHATE ROCK	3	2.092	6.276	0.001
SALT (SODIUM CHLORIDE)	1	43.084	43.084	0.004
SILICA	1	13.657	13.657	0.001
SODA ASH	1	2.624	2.624	0.000
THALLIUM	4		0.000	0.000
TITANIUM	3	8.412	25.235	0.002
URANIUM (235, 236, 238)	3	0.000	0.000	0.000
WATER INPUT	NA	40,071.312	0.000	0.000
ZINC	4	8.347	33.390	0.003

ACIDIFICATION POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	Acid. Pot. Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Acid. Pot. Score			25.615	1.187
Normalizing Score			21.584	
AMMONIA	1.880	0.000	0.000	0.000
HYDROCHLORIC ACID	0.880	0.001	0.001	0.000
NOX	0.700	5.879	4.115	0.191
SOX	1.000	21.498	21.498_	0.996

PHOTOCHEMICAL OXIDANT POTENTIAL IMPACT CALCULATIONS

PHOTOCHEMICAL OXIDANT POTENTIAL	Contract to the second		()	
	POCP	Inventory	_	Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total POCP Score			6.168	1.035
Normalizing Factor			5.959	
ACETALDEHYDE	0.527	0.054	0.029	0.005
ACETONE	0.178	0.007	0.001	0.000
ALDEHYDES	0.443	0.017	0.008	0.001
AROMATIC HYDROCARBONS (C8-C10)	0.761	0.023	0.017	0.003
BENZENE	0.189	0.110	0.021	0.003
BUTANE (n-)	0.410	0.053	0.022	0.004
BUTANE (iso-)	0.315	0.003	0.001	0.000
BUTYL ACETATE (n-)	0.323	0.139	0.045	0.008
BUTYL ALCOHOL	0.196	0.036	0.007	0.001
CHLOROFORM	0.021	0.001	0.000	0.000
ETHANE	0.082	0.042	0.003	0.001
ETHYL BENZENE	0.593	0.002	0.001	0.000
ETHYLENE	1.000	0.003	0.003	0.000
HEPTANE (n-)	0.529	0.076	0.040	0.007
HEXANE (n-)	0.421	0.059	0.025	0.004
METHANÈ	0.007	0.246	0.002	0.000
METHANOL	0.123	0.000	0.000	0.000
METHYL ETHYL KETONE	0.473	0.002	0.001	0.000
METHYL ISOAMYL KETONE	0.326	0.524	0.171	0.029
METHYL ISOBUTYL KETONE	0.326	0.023	0.008	0.001
METHYL PROPYL KETONE	0.326	0.000	0.000	0.000
OCTANE (n-)	0.493	0.051	0.025	0.004
PENTANE (n-)	0.408	0.037	0.015	0.003
PROPANE	0.420	0.066	0.028	0.005
PROPYL ACETATE	0.218	0.000	0.000	0.000
PROPYLENE	1.030	0.001	0.001	0.000
TOLUENE	0.563	0.024	0.014	0.002
TRICHLOROETHANE	0.021	0.002	0.000	0.000
VOC	0.397	14.210	5.641	0.947
XYLENE	0.849	0.047	0.040	0.007

HUMAN HEALTH INHALATION TOXICIT					
HH INHALATION					
	TOXICITY	inventory		Normalized	
	Equiv.	Value	Factored	Factored	
CHEMICAL NAME	Factor	lb/FU	Score	Score	
Total HH Inh. Tox. Factored Score			25.416	1.999	
Normalizing Score			12.715		
ACETALDEHYDE	7.44	0.054	0.404	0.032	
ACETONE	0	0.007	0.000	0.000	
ACETONITRILE	0	0.000	0.000	0.000	
AMMONIA	5.7	0.000	0.000	0.000	
ALDEHYDES	NA	0.017	0.000	0.000	
ALUMINUM	15.6	0.003	0.041	0.003	
AROMATIC HYDROCARBONS (C8-C10)	NA	0.023	0.000	0.000	
BENZENE	NA	0.110	0.000	0.000	
BUTANE (n-)	17.5	0.053	0.919	0.072	
BUTANE (iso-)	NA	0.003	0.000	0.000	
BUTYL ACETATE (n-)	8.49	0.139	1.177	0.093	
BÜTANOL	0.95	0.036	0.034	0.003	
BUTYL CELLOSOLVE	12.29	0.000	0.000	0.000	
BUTYLENE OXIDE, 1,2-	NA	0.000	0.000	0.000	
CADMIUM	2.25	0.000	0.000	0.000	
CARBON TETRACHLORIDE	7.06	0.003	0.020	0.002	
CHLORINE	22.05	0.577	12.715	1.000	
CHLOROFORM	2.57	0.001	0.003	0.000	
CO	4.47	1.289	5.763	0.453	
CO2	NA	267.997	0.000	0.000	
CUMENE	1.35	0.027	0.036	0.003	
CYCLOPARAFFINS, C-7	NA	0.011	0.000	0.000	
CYCLOPARAFFINS, C-7	NA ·	0.004	0.000	0.000	
DICHLORODIFLUOROMETHANE (CFC	0	0.004	0.000	0.000	
ETHANE	NA NA	0.000	0.000	0.000	
ETHYL BENZENE	3.19	0.042	0.000	0.000	
				0.000	
ETHYLENE ETHYLENE CHI ODIDE	0	0.003	0.000		
ETHYLENE CHLORIDE	0	0.003	0.000	0.000 0.004	
ETHYLENE DICHLORIDE	7.32 14.64	0.008 0.028	0.057 0.410	0.032	
FLUORINE					
FORMALDEHYDE	15.6	0.019	0.291	0.023	
HEAVY AROMATIC	NA	0.197	0.000	0.000	
HEPTANE (n-)	0	0.076	0.000	0.000	
HEXYL ACETATE	NA 10	0.000	0.000	0.000	
HEXAMETHYLENE DIISOCYANTE	10	0.050	0.000	0.000	
HEXANE (n-)	0	0.059	0.000	0.000	
HYDROCHLORIC ACID	14.82	0.001	0.020	0.002	
HYDROGEN CYANIDE	30	0.007	0.202	0.016	
ISOBUTYRALDEHYDE	1.86	0.000	0.000	0.000	
ISOPROPYL ALCOHOL	0	0.002	0.000	0.000	
LEAD	NA NA	0.001	0.000	0.000	
METHANE	NA	0.246	0.000	0.000	
METHANOL	0	0.000	0.000	0.000	

METHYL ETHYL KETONE	1.4	0.002	0.003	0.000
METHYL ISOAMYL KETONE	4	0.524	2.098	0 165
METHYL ISOBUTYL KETONE	2.33	0.023	0.054	0.004
METHYL PROPYL KETONE	NA	0.000	0.000	0.000
NAPTHA, NM&P	NA	0.066	0.000	0.000
NAPHTHALENE	26.45		0.000	0.000
NOX	NA	5.879	0.000	0.000
NITRIC ACID	26.4	0.000	0.000	0.000
NITROETHANE	NA	0.000	0.000	0.000
NITROPROPANE	14.4	0.000	0.000	0.000
OCTANE (n-)	0	0.051	0.000	0.000
ORGANIC ACIDS	NA	0.022	0.000	0.000
PENTANE (n-)	13.34	0.037	0.493	0.039
PHENOL	22.33	0.022	0.483	0.038
PHOSGENE	12.5		0.000	0.000
PHOSPHORIC ACID	30		0.000	0.000
PM	NA	5.948	0.000	0.000
PM-10	NA	0.310	0.000	0.000
PROPANE	NA	0.066	0.000	0.000
PROPYL ACETATE	NA	0.000	0.000	0.000
TOLUENE	2.04	0.024	0.049	0.004
TRICHLOROEHTANE (METHYL CHLO	5.6	0.002	0.013	0.001
VINYL CHLORIDE	18.52	0.001	0.026	0.002
VOC	NA	14.210	0.000	0.000
XYLENE	2.1	0.047	0.098	0.008

TERRESTRIAL TOXICITY IMPACT CALCULATIONS

TERRESTRIAL TOXICITY IMPACT CALC	ERRESTRIAL			
•	TOXICITY	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	Ib/FU	Score	Score
Total Terr. Tox. Factored Score		ibn 0	3.142	2.923
Normalizing Score			1.075	2.020
ACETALDEHYDE	3.255	0.054	0.177	0.164
ACETONE	1.860	0.007	0.014	0.013
ACETONITRILE	0.610	0.000	0.000	0.000
ALUMINUM	0.000	0.001	0.000	0.000
AMMONIA	9.030	0.000	0.000	0.000
ARSENIC	31.730	0.000	0.001	0.001
BENZENE	0.000	0.111	0.000	0.000
BUTYL ACETATE (n-)	0.000	0.139	0.000	0.000
BUTYL ALCOHOL	6.180	0.036	0.220	0.205
BUTYL CELLOSOLVE	7.590	0.000	0.000	0.000
BUTYLENE OXIDE, 1,2-	1.610	0.000	0.000	0.000
CADMIUM	21.030	0.005	0.104	0.097
CARBON TETRACHLORIDE	1.710	0.003	0.005	0.004
CHLORINE	0.000	0.616	0.000	0.000
CHLOROFORM	6.160	0.001	0.008	0.008
CHROMIUM, TRIVALENT	19.290	0.001	0.011	0.010
COBALT COMPOUNDS	20.960		0.000	0.000
COPPER COMPOUNDS	12.000	0.000	0.000	0.000
CUMENE	2.710	0.027	0.073	0.068
DICHLORODIFLUOROMETHANE	1.330	0.000	0.000	0.000
DIETHYLAMINETRIAMINE	5.270		0.000	0.000
ETHYL BENZENE	0.000	0.002	0.000	0.000
ETHYLENE BIOLU ODIDE	0.000	0.003	0.000	0.000
ETHYLENE DICHLORIDE	4.890	0.000	0.000	0.000
FGD SOLIDS	0.000	0.000	0.000	0.000
FLY ASH	0.000	0.000	0.000	0.000
FORMALDEHYDE HEPTANE (n-)	12.600	0.019	0.235	0.218
HEXANE (n-)	9.500 0.000	0.076 0.059	0.725	0.674
HEXYL ACETATE	0.000	0.000	0.000 0.000	0.000 0.000
HEXAMETYHYLENE DIISOCYANTE	2.640	0.000	0.000	0.000
HYDROCHLORIC ACID	5.740	0.001	0.008	0.007
HYDROGEN CYANIDE	30.000	0.007	0.202	0.188
IRON	0.000	0.000	0.000	0.000
ISOBUTYRALDEHYDE	1.860	0.000	0.000	0.000
ISOPROPYL ALCOHOL	0.950	0.002	0.002	0.002
KEROSENE	0.000	0.000	0.000	0.000
LEAD	5.750	0.003	0.015	0.014
METHYL ETHYL KETONE	1.860	0.002	0.004	0.004
METHYL ISOAMYL KETONE	2.050	0.524	1.075	1.000
METHYL ISOBUTYL KETONE	2.790	0.023	0.065	0.060

METHYL PROPYL KETONE	4.570	0.000	0.000	0.000
NAPHTHALENE	3.170	2.222	0.000	0.000
NITRIC ACID	10.200	0.000	0.000	0.000
NITROPROPANE, 2-	8.400		0.000	0.000
PHENOL	7.600	0.022	0.164	0.153
PHOSPHORIC ACID	5.400		0.000	0.000
PROPYL ACETATE	0.870	0.000	0.000	0.000
PLUTONIUM (FISSILE & NONFISSILE)	0.000	0.000	0.000	0.000
SLAG	0.000	0.000	0.000	0.000
SULFURIC ACID	3.600	0.000	0.000	0.000
TOLUENE	0.000	0.024	0.000	0.000
TRICHLOROETHANE (METHYL CHLOR	0.000	0.002	0.000	0.000
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000
VINYL CHLORIDE	7.870	0.001	0.011	0.010
XYLENE	0.520	0.047	0.024	0.023
ZINC	0.000	0.000	0.000	0.000

AQUATIC TOXICITY IMPACT CALCULATIONS

AGUATIC TOXICITY IMPACT CALCULAT	AQUATIC			
	TOXICITY	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Aquatic Tox. Factored Score	•		1.127	1.279
Normalizing Score			0.881	
ACETONITRILE	0.000		0.000	0.000
AMMONIA	21.850		0.000	0.000
ALUMINUM	0.000	0.001	0.000	0.000
ARSENIC	18.750	0.000	0.000	0.001
BENZENE	14.070	0.001	0.009	0.010
BORON	0.000	0.013	0.000	0.000
BUTYL ALCOHOL	0.000	0.036	0.000	0.000
BUTYLENE OXIDE, 1,2-	NA		0.000	0.000
CADMIUM	36.250	0.005	0.179	0.203
CARBON TETRACHLORIDE	1.200		0.000	0.000
CHLORIDE	NA	10.123	0.000	0.000
CHLORINE	22.500	0.039	0.881	1.000
CHLOROFORM	9.750		0.000	0.000
CHROMIUM, TRIVALENT	16.630	0.001	0.009	0.010
COBALT COMPOUNDS	31.750		0.000	0.000
COPPER COMPOUNDS	30.000	0.000	0.001	0.001
DICHLORODIFLUOROMETHANE (CFC-1	NA		0.000	0.000
HYDROCHLORIC ACID	13.860		0.000	0.000
IRON	25.000	0.000	0.000	0.000
LEAD	25.000	0.002	0.044	0.050
MERCURY	37.500	0.000	0.000	0.000
METHYL ISOAMYL KETONE	10.200		0.000	0.000
NAPHTHALENE	19.570		0.000	0.000
NITRIC ACID	15.600		0.000	0.000
NITROPROPANE, 2-	23.400		0.000	0.000
OIL & GREASE	NA	0.316	0.000	0.000
ORGANIC ACIDS	NA		0.000	0.000
PETROLEUM (CRUDE OIL)	NA	0.000	0.000	0.000
PHENOL	11.400	0.000	0.000	0.000
PHOSPHORIC ACID	11.400		0.000	0.000
SODIUM	NA	12.822	0.000 .	0.000
SULFIDE	NA 15.000	0.000	0.000	0.000
SULFURIC ACID	15.000	0.000	0.001	0.001
XYLENE	16.240	0.000	0.000	0.000
ZINC	20.300	0.000	0.001	0.001

LAND USE IMPACT CALCULATIONS

CHEMICAL NAME	LAND USE Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Land Use Score			254.813	1.577
Normalizing Score			161.615	
BOTTOM ASH	2.000	0.000	0.000	0.000
FGD SOLIDS	2.000	0.000	0.000	0.000
FLY ASH	2.000	0.000	0.000	0.000
HAZARDOUS WASTE	2.000	80.808	161.615	1.000
PLUTONIUM (FISSILE & NONFISSILE)	NA	0.000	0.000	0.000
SLAG	2.000	0.000	0.000	0.000
SOLID WASTE	1.500	62.132	93.198	0.577
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000

ALTERNATIVE PRIMER AND THINNER

Scale	SSU68>	AHP Weighting Factor	Normalized Factored Score	Weighted Normalized Factored Score	Baseline Score
CARCOPT					0.692
GLOBAL				0.211	
	ODP	0.17983	0.367	990 0	
	GLBLWRM	0.11328	0.984	0.111	
	FSLFUELS	0.02855	1.180	0.034	
REGIONAL			•	0.203	
	ACIDDEP	0.06253	1.175	0.074	- <u>-</u>
	SMOG	0.13007	0.992	0.129	
	WTRUSE	0.01002		0.000	•
LOCAL			⁻ .	0.278	
	TOXICITY		-	0.238	
	HUMAN	0.06155	1.739	0.107	
	ENVTERR	0.02052	2.862	0.059	
	ENVAQ	0.02052	3.540	0.073	
	LANDUSE	0.02507	1.585	0.040	

OZONE DEPLETION POTENTIAL IMPACT CALCULATIONS

	ODP Equiv.	Inventory Value	Factored	Normalized Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total ODP Score			0.001	0.367
Normalizing Factor			0.003	
CARBON TETRACHLORIDE	1.080	0.000	0.000	0.000
DICHLORODIFLUOROMETHANE	1.000	0.001	0.001	0.367
TRICHLOROETHANE (METHYL CHLOROFORM	0.120	0.000	0.000	0.000

GLOBAL WARMING POTENTIAL IMPACT CALCULATIONS

	GWP Equiv.	inventory Value	Factored	Normalized Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total GWP Score	9		295.468	0.984
Normalizing Score	9		300.337	
CARBON TETRACHLORIDE	1300	0.000	0.000	0.000
CO2	1	287.647	287.647	0.958
DICHLORODIFLUOROMETHANE	7100	0.001	7.821	0.026
TRICHLOROETHANE	100	0.000	0.000	0.000

RESOURCE DEPLETION IMPACT CALCULATIONS

REGORNE DET EETION IIII ACTO	RESOURCE			
	DEPLETION	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Resource Depetion Score			12,987.118	1.180
Normalizing Score			11,010.628	
BAUXITE	4	83.964	335.857	0.031
CHROME OXIDE	2	4.553	9.107	0.001
COAL	3	0.000	0.000	0.000
COBALT OXIDE	3	1.003	3.010	0.000
IRON ORE	3	1.341	4.023	0.000
LIMESTONE	1	4.653	4.653	0.000
MAGNESIUM ORE	1	2.249	2.249	0.000
NATURAL GAS	4	537.339	2,149.357	0.195
PETROLEUM (CRUDE OIL)	4	2,594.511	10,378.045	0.943
PHOSPHATE ROCK	3	0.000	0.000	0.000
SALT (SODIUM CHLORIDE)	1	43.470	43.470	0.004
SILICA	1	13.377	13.377	0.001
SODA ASH	1	2.624	2.624	0.000
THALLIÚM	4		0.000	0.000
TITANIUM	3	13.782	41.345	0.004
URANIUM (235, 236, 238)	3	0.000	0.000	0.000
WATER INPUT	NA	40,765.310	0.000	0.000
ZINC	4	0.000	0.000	0.000

ACIDIFICATION POTENTIAL IMPACT CALCULATIONS

CHEMICAL NAME	Acid. Pot. Equiv. Factor	Inventory Value Ib/FU	Factored Score	Normalized Factored Score
Total Acid. Pot. Score			25.370	1.175
Normalizing Score			21.584	
AMMONIA	1.880	0.001	0.002	0.000
HYDROCHLORIC ACID	0.880	0.002	0.002	0.000
NOX	0.700	5.993	4.195	0.194
SOX	1.000	21.172	21.172	0.981

PHOTOCHEMICAL OXIDANT POTENTIAL IMPACT CALCULATIONS

	POCP	Inventory		NIO 2000 2 11 20 4
	Earrie	Value	Factored	Normalized Factored
CUERICAL MARE	Equiv.	Ib/FU	Score	Score
CHEMICAL NAME	Factor	וט/רט		0.992
Total POCP Score			5.910	0.992
Normalizing Factor	0.507	0.000	5.959	0.004
ACETALDEHYDE	0.527	0.006	0.003	0.001
ACETONE	0.178	0.008	0.001	0.000
ALDEHYDES	0.443	0.018	0.008	0.001
AROMATIC HYDROCARBONS (C8-C10)	0.761	0.061	0.046	0.008
BENZENE	0.189	0.275	0.052	0.009
BUTANE (n-)	0.410	0.056	0.023	0.004
BUTANE (iso-)	0.315	0.003	0.001	0.000
BUTYL ACETATE (n-)	0.323	0.024	0.008	0.001
BUTYL ALCOHOL	0.196	0.042	0.008	0.001
CHLOROFORM	0.021	0.000	0.000	0.000
ETHANE	0.082	0.045	0.004	0.001
ETHYL BENZENE	0.593	0.002	0.001	0.000
ETHYLENE	1.000	0.000	0.000	0.000
HEPTANE (n-)	0.529	0.081	0.043	0.007
HEXANE (n-)	0.421	0.063	0.026	0.004
METHANE	0.007	0.260	0.002	0.000
METHANOL	0.123	0.000	0.000	0.000
METHYL ETHYL KETONE	0.473	0.004	0.002	0.000
METHYL ISOAMYL KETONE	0.326	0.524	0.171	0.029
METHYL ISOBUTYL KETONE	0.326	0.000	0.000	0.000
METHYL PROPYL KETONE	0.326	0.000	0.000	0.000
OCTANE (n-)	0.493	0.054	0.027	0.004
PENTANE (n-)	0.408	0.039	0.016	0.003
PROPANE	0.420	0.070	0.029	0.005
PROPYL ACETATE	0.218	0.000	0.000	0.000
PROPYLENE	1.030	0.001	0.001	0.000
TOLUENE	0.563	0.189	0.106	0.018
TRICHLOROETHANE	0.021	0.000	0.000	0.000
VOC	0.397	13.327	5.291	0.888
XYLENE	0.849	0.047	0.040	0.007

HUMAN HEALTH INHALATION TOXICITY IMPACT CALCULATIONS

HUMAN HEALTH INHALATION TOXICIT	H INHALATIO			
•••	TOXICITY	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total HH Inh. Tox. Factored Score			22.109	1.739
Normalizing Score			12.715	
ACETALDEHYDE	7.44	0.006	0.046	0.004
ACETONE	0	0.008	0.000	0.000
ACETONITRILE	Ö	0.000	0.000	0.000
AMMONIA	5.7	0.001	0.005	0.000
ALDEHYDES	NA	0.018	0.000	0.000
ALUMINUM	15.6	0.003	0.043	0.003
AROMATIC HYDROCARBONS (C8-C10)	NA	0.061	0.000	0.000
BENZENE	NA	0.275	0.000	0.000
BUTANE (n-)	17.5	0.056	0.973	0.077
BUTANE (iso-)	NA	0.003	0.000	0.000
BUTYL ACETATE (n-)	8.49	0.024	0.205	0.016
BUTANOL	0.95	0.042	0.040	0.003
BUTYL CELLOSOLVE	12.29	0.000	0.000	0.000
BUTYLENE OXIDE, 1,2-	NA	0.000	0.000	0.000
CADMIUM	2.25		0.000	0.000
CARBON TETRACHLORIDE	7.06	0.000	0.000	0.000
CHLORINE	22.05	0.586	12.915	1.016
CHLOROFORM	2.57	0.000	0.000	0.000
CO	4.47	0.832	3.719	0.293
CO2	NA	287.647	0.000	0.000
CUMENE	1.35	0.023	0.030	0.002
CYCLOPARAFFINS, C-7	NA	0.011	0.000	0.000
CYCLOPARAFFINS, C-8	NA	0.004	0.000	0.000
DICHLORODIFLUOROMETHANE (CFC	0	0.001	0.000	0.000
ETHANE	NA	0.045	0.000	0.000
ETHYL BENZENE	3.19	0.002	0.006	0.000
ETHYLENE	0	0.000	0.000	0.000
ETHYLENE CHLORIDE	0	0.000	0.000	0.000
ETHYLENE DICHLORIDE	7.32	0.000	0.000	0.000
FLUORINE	14.64	0.000	0.000	0.000
FORMALDEHYDE	15.6	0.020	0.314	0.025
HEAVY AROMATIC	NA	0.197	0.000	0.000
HEPTANE (n-)	0	0.081	0.000	0.000
HEXYL ACETATE	NA 10	0.005	0.000	0.000
HEXAMETHYLENE DIISOCYANTE	10	0.063	0.000 0.000	0.000
HEXANE (n-)	0	0.063 0.002	0.000	0.000 0.002
HYDROCHLORIC ACID	14.82 30	0.002	0.029	0.002
HYDROGEN CYANIDE	1.86	0.007	0.000	0.000
ISOBUTYRALDEHYDE ISOPROPYL ALCOHOL	0	0.000	0.000	0.000
LEAD	NA NA	0.000	0.000	0.000
METHANE	NA NA	0.260	0.000	0.000
METHANOL	0	0.000	0.000	0.000
MILHANOL	· ·	0.000	0.000	3.300

METHYL ETHYL KETONE	1.4	0.004	0.006	0.000
METHYL ISOAMYL KETONE	4	0.524	2.098	0.165
METHYL ISOBUTYL KETONE	2.33	0.000	0.000	0.000
METHYL PROPYL KETONE	NA	0.000	0.000	0.000
NAPTHA, NM&P	NA	0.066	0.000	0.000
NAPHTHALENE	26.45		0.000	0.000
NOX	NA	5.993	0.000	0.000
HITRIC ACID	26.4	0.000	0.000	0.000
NITROETHANE	NA	0.004	0.000	0.000
NTROPROPANE	14.4	0.001	0.009	0.001
OCTANE (n-)	0	0.054	0.000	0.000
ORGANIC ACIDS	NA	0.023	0.000	0.000
PENTANE (n-)	13.34	0.039	0.523	0.041
PHENOL	22.33	0.021	0.461	0.036
PHOSGENE	12.5		0.000	0.000
PHOSPHORIC ACID	30		0.000	0.000
PM	NA	5.956	0.000	0.000
PM-10	NA	0.310	0.000	0.000
PROPANE	NA	0.070	0.000	0.000
PROPYL ACETATE	NA	0.000	0.000	0.000
TOLUENE	2.04	0.189	0.385	0.030
TRICHLOROEHTANE (METHYL CHLO	5.6	0.000	0.000	0.000
VINYL CHLORIDE	18.52	0.000	0.000	0.000
VOC	NA NA	13.327	0.000	0.000
XYLENE	2.1	0.047	0.099	0.008

TERRESTRIAL TOXICITY IMPACT CALCULATIONS

TERRESTRIAL TOXICITY IIII ACT GALL	ERRESTRIAL	-		
	TOXICITY	Inventory		Normalized
	Equiv.	Value ´	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Terr. Tox. Factored Score	,		3.077	2.862
Normalizing Score		•	1.075	
ACETALDEHYDE	3.255	0.006	0.020	0.019
ACETONE	1.860	0.008	0.015	0.014
ACETONITRILE	0.610	0.005	0.003	0.003
ALUMINUM	0.000	0.001	0.000	0.000
AMMONIA	9.030	0.001	0.008	0.007
ARSENIC	31.730	0.000	0.001	0.001
BENZENE	0.000	0.275	0.000	0.000
BUTYL ACETATE (n-)	0.000	0.024	0.000	0.000
BUTYL ALCOHOL	6.180	0.042	0.258	0.240
BUTYL CELLOSOLVE	7.590	0.000	0.000	0.000
BUTYLENE OXIDE, 1,2-	1.610	0.000	0.000	0.000
CADMIUM	21.030	0.008	0.168	0.156
CARBON TETRACHLORIDE	1.710	0.000	0.000	0.000
and the second s	0.000	0.707	0.000	0.000
CHLORINE	6.160	0.000	0.000	0.000
CHLOROFORM CHROMIUM, TRIVALENT	19.290	0.001	0.017	0.016
COBALT COMPOUNDS	20.960	0.001	0.000	0.000
COPPER COMPOUNDS	12.000	0.000	0.001	0.001
CUMENE	2.710	0.023	0.061	0.057
DICHLORODIFLUOROMETHANE	1.330	0.001	0.001	0.001
DIETHYLAMINETRIAMINE	5.270	0.001	0.000	0.000
ETHYL BENZENE	0.000	0.002	0.000	0.000
ETHYLENE	0.000	0.000	0.000	0.000
ETHYLENE DICHLORIDE	4.890		0.000	0.000
FGD SOLIDS	0.000	0.000	0.000	0.000
FLY ASH	0.000	0.000	0.000	0.000
FORMALDEHYDE	12.600	0.020	0.253	0.236
HEPTANE (n-)	9.500	0.081	0.767	0.714
HEXANE (n-)	0.000	0.063	0.000	0.000
HEXYL ACETATE	0.000	0.005	0.000	0.000
HEXAMETYHYLENE DIISOCYANTE	2.640		0.000	0.000
HYDROCHLORIC ACID	5.740	0.002	0.011	0.010
HYDROGEN CYANIDE	30.000	0.007	0.204	0.189
IRON	0.000	0.000	0.000	0.000
ISOBUTYRALDEHYDE	1.860	0.000	0.000	0.000
ISOPROPYL ALCOHOL	0.950	0.000	0.000	0.000
KEROSENE	0.000	0.000	0.000	0.000
LEAD	5.750	0.003	0.017	0.016
METHYL ETHYL KETONE	1.860	0.004	0.008	0.008
METHYL ISOAMYL KETONE	2.050	0.524	1.075	1.000
METHYL ISOBUTYL KETONE	2.790	0.000	0.000	0.000

METHYL PROPYL KETONE	4.570	0.000	0.000	0.000
NAPHTHALENE	3.170		0.000	0.000
NITRIC ACID	10.200	0.001	0.007	0.006
NITROPROPANE, 2-	8.400		0.000	0.000
PHENOL	7.600	0.021	0.157	0.146
PHOSPHORIC ACID	5.400		0.000	0.000
PROPYL ACETATE	0.870	0.000	0.000	0.000
PLUTONIUM (FISSILE & NONFISSILE)	0.000	0.000	0.000	0.000
SLAG	0.000	0.000	0.000	0.000
SULFURIC ACID	3.600	0.000	0.000	0.000
TOLUENE	0.000	0.189	0.000	0.000
TRICHLOROETHANE (METHYL CHLOR	0.000	0.000	0.000	0.000
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000
VINYL CHLORIDE	7.870	0.000	0.000	0.000
XYLENE	0.520	0.047	0.025	0.023
ZINC	0.000	0.000	0.000	0.000

AQUATIC TOXICITY IMPACT CALCULATIONS

AQUATIC TOXICITY IMPACT CALCULAT	AQUATIC			
	TOXICITY	Inventory		Normalized
	Equiv.	Value	Factored	Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Aquatic Tox. Factored Score			3.119	3.540
Normalizing Score			0.881	
ACETONITRILE	0.000		0.000	0.000
AMMONIA	21,850		0.000	0.000
ALUMINUM	0.000	0.001	0.000	0.000
ARSENIC	18.750	0.000	0.001	0.001
BENZENE	14.070	0.001	0.009	0.011
BORON	0.000	0.014	0.000	0.000
BUTYL ALCOHOL	0.000	0.042	0.000	0.000
BUTYLENE OXIDE, 1,2-	NA		0.000	0.000
CADMIUM	36.250	0.008	0.289	0.328
CARBON TETRACHLORIDE	1.200		0.000	0.000
CHLORIDE	NA	10.721	0.000	0.000
CHLORINE	22.500	0.121	2.727	3.096
CHLOROFORM	9.750		0.000	0.000
CHROMIUM, TRIVALENT	16.630	0.001	0.015	0.017
COBALT COMPOUNDS	31.750		0.000	0.000
COPPER COMPOUNDS	30.000	0.000	0.002	0.002
DICHLORODIFLUOROMETHANE (CFC-1	NA		0.000	0.000
HYDROCHLORIC ACID	13.860		0.000	0.000
IRON	25.000	0.000	0.000	0.000
LEAD	25.000	0.003	0.073	0.082
MERCURY	37.500	0.000	0.000	0.000
METHYL ISOAMYL KETONE	10.200		0.000	0.000
NAPHTHALENE	19.570		0.000	0.000
NITRIC ACID	15.600		0.000	0.000
NITROPROPANE, 2-	23.400	0.225	0.000	0.000
OIL & GREASE	NA	0.335	0.000	0.000
ORGANIC ACIDS	NA	0.000	0.000	0.000 0.000
PETROLEUM (CRUDE OIL)	NA	0.000	0.000 0.000	0.000
PHENOL	11.400	0.000	0.000	0.000
PHOSPHORIC ACID	11.400	13.580	0.000	0.000
SODIUM	NA NA	0.000	0.000	0.000
SULFIDE	15.000	0.000	0.000	0.000
SULFURIC ACID	16.240	0.000	0.001	0.000
XYLENE	20.300	0.000	0.000	0.002
ZINC	20.300	0.000	0.001	0.002

LAND USE IMPACT CALCULATIONS

	LAND USE Equiv.	Inventory Value	Factored	Normalized Factored
CHEMICAL NAME	Factor	lb/FU	Score	Score
Total Land Use Score			251.871	1.585
Normalizing Score			161.615	
BOTTOM ASH	2.000	0.000	0.000	0.000
FGD SOLIDS	2.000	0.000	0.000	0.000
FLY ASH	2.000	0.000	0.000	0.000
HAZARDOUS WASTE	2.000	79.465	158.930	1.000
PLUTONIUM (FISSILE & NONFISSILE)	NA	0.000	0.000	0.000
SLAG	2.000	0.000	0.000	0.000
SOLID WASTE	1.500	61.961	92.941	0.585
URANIUM (235, 236, 238)	NA	0.000	0.000	0.000

APPENDIX E SENSITIVITY ANALYSIS

	% Change 4.701608 6.521181 3.325989 6.127058 3.19206 8.637826	
	Total % 0.842724 0.803102 0.671124 0.627359 0.627359 0.63355 0.763355	
88 8	Res 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Res
Land	Land R 161.615 0.02507 1.577 1.585 1.493 1.497 1.585 1.585 1.585 1.585 1.585	Land
Aqua	21.85 15.6 37.5 37.5 10.02052 1.28 1.00148 3.537 0.925 0.925 0.925 1.279 0.925 1.279 0.925 0.925 0.925 0.925	Aqua
	alency Factors Terr Ac 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	Terr A
Teg	ulated Equivalen 26.45 12.715 0.06156 1.189616 1.189616 1.189616 1.189616 1.189616 1.189616 1.172 0.063833 0.172 0.123362 1.170204 1.170204	THH 0
FHH AN	GWP HHIT 300.337 0.11328 0.113	GWP
GWP	Clors Derived GW GV 21 584 0.06253 1.198 1.173 1.173 1.173 1.175 1.175	enario 1
ency Factors P AP	ODP AP ODP AP 0.003 0.17983 1.09 1.09 0.367 0.265 0.265 0.265 0.367 0.367 0.367 0.367 0.367 0.367	j go
Current Equivalency Fa POCP ODP 0.397 0.761	Worst Case Equivalency Factors Derived from Tabulated Equivalency Factors POCP AP GWP HHIT Terr Ac 1.03 AP GWP HHIT Terr Ac 1.03 26.45 12.6 12.6 1.03 26.45 12.6 12.6 1.03 26.45 12.6 12.6 1.03 26.45 12.6 12.6 26.45 12.6 12.6 12.6 26.45 12.6 12.6 12.6 26.45 12.6 12.6 12.6 26.45 12.6 12.6 12.6 26.45 12.6 12.6 12.6 26.45 12.6 12.6 12.6 26.45 12.6 12.6 12.6 26.45 12.6 12.6 12.6 26.45 12.6 12.6 12.6 26.45 12.6 12.6 12.6 26.45 12.7 12.7 12.6 1114 1.0	Current Factored Scor POCP ODP 5 959
Environmental Compartment Air Air Air Air Air Water Water	Environmental Compartment Air	Environmental Compartment Air
Compound VOC Heavy aromatics Aromatic hydrocarbons C7 cyclopararffins C8 cyclopararffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Dissolved solids Metals	Environmental Compound VOC Air Heavy aromatics Aromatic hydrocarbons Air C7 cycloparaffins Air C8 cycloparaffins Air C9 cycloparaffins Air C9 cycloparaffins Air C9 cycloparaffins Air Hydrocarbons Air Air Hydrocarbons Air Hydrocarbons Air Air Hydrocarbons Air Hydrocarbons Air Air Air Air Air Air Air Air	Compound VOC Heavy aromatics

Table E-1

		ر د د				_	0 13.28299 0 0.098376	0 0	00	1 SE-0	Ses Ses	0 0.005453					0 0.001206	8 9E-0	00		
		- T		o c			00		762.1927	_	- Page 1	0		0	0	0		0	0 •	1 4E.08	
		Tor	189.1428	3 2.485967 3 0.288855			8 4184142 0 0	0	00		Terr	-	3 0 0 1 3 1 4 3	7 0 001527		0	0 22121				
000 0		Ė	Ē	0 5.218559 n n.ene366		0	0 87.83378 0				ario 1 HHIT	C	0 0.013143			0	0 0.221216			.	,
	- Scenario 1	- Scenario 1	0	0 0	0	0	0 0	0	0 (00	ored Score - Scenario	c	0	0	0	0	0	0	0 (5	>
_	ssions Rates	ctored Score		0;			37 0 0			00	Revised Normalized Factored Score	C	- 0		0	0	216 0			0 0	
0.017	_	α (0	0.0230		3.42037							0.001527			0.221216				
As Air Air Air Air Air Air Vater Water		Water Water Environmental	Compartment Air		ons Air Air	Ā	Ā Š			Water Water	Environmental	Air	কৈ		Ą	Air	Air	Ąi		Water	Water
Aromatic hydrocarbons C7 cycloparaffins C8 cycloparaffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Dissolved solids Metals	Compound VOC Heavy aromatics Aromatic hydrocarbons C7 cycloparaffins C8 cycloparaffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions		Compound VOC	Heavy aromatics	Aromatic hydrocarbons	C8 cycloparaffins	Hydrocarbons	Organic acids Alinhatic hydrocarbons	Mobile ions	Dissolved solids Metals		Compound	VOC Heavy aromatics	Aromatic hydrocarbons	C7 cycloparaffins	C8 cycloparaffins	Hydrocarbons	Organic acids	Aliphatic hydrocarbons	Mobile ions	Dissolved solids
		E-2																			

	Metals	Water	0	0	0	0	0	0	1.9E-11	=	0	1.4E-13	m
E-3	Compound VOC Heavy aromatics Aromatic hydrocarbons C7 cycloparaffins C8 cycloparaffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Compound VOC Heavy aromatics Aromatic hydrocarbons C7 cycloparaffins C7 cycloparaffins Hydrocarbons C8 cycloparaffins Hydrocarbons C9 cycloparaffins Mydrocarbons C1 cycloparaffins Mydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Mobile ions Dissolved solids	Environmental Compartment Air	Current Factored Score - Scenario 2 POCP ODP AP 5.516 0.029 Current Emissions Rates - Scenario 2 13.89406 0.197299 0.038055 0.010686 0.003907 2.93879 0.021765 0 30.87066 6.3E-07 3.5E-10	Rates - Scenario	ario 2	*	- 0000 0 	Terr	Aqua	Land		8	
		Environmental	sed Fac			•		,	:			(
	Compound	Compartment	POCP OUP	Ą (dw ₂			lerr	Adna	Land	•	Kes	
	NOC	Air	14.31088	> 0	> 0	> (367.4979	7495057		> c	> 0	55.5/624	a (
	Heavy aromatics Aromatic hydrocarbons	ŧ ŧ	0 039197	0 0	. .	0	1.006555	0.465967		o c	O	0.769190	٥ ٥
	C7 cycloparaffins	Air	0	0	0	0	0.282645	0.134644		0	0	0.042744	4
	C8 cycloparaffins	Air	0	0	0	0	0.10334	0.049228		0	0	0.015628	6 0
	Hydrocarbons	Air	3.026954	0	0	0	77 731	37.02875		0	0	11,75516	9
	Organic acids	Air	0	0	0	0	0	0		0	0	0 08706	9
	Aliphatic hydrocarbons	Air	0	0	0	0	0	0		0	0		0
	Mobile ions	Water	0	0	0	0	0	0	674,5239	39	0		0
	Dissolved solids	Water	0	0	0	0	0	0	90-38 G	99	0		0
	Metals	Water	0	0	0	0	0	0	1.3E-08	80	0	1.4E-09	6
	Compound VOC Heavy aromatics Aromatic hydrocarbons	Environmental Compartment Air Air	Revised Normalized Factored Score - Scenario 2 POCP ODP AP GWP 0.925572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d Factored Sc AP 0 0 0	core - Scenar GWP 0 0		HHIT 0.925572 0.013143 0.002535	Terr 0 925572 0 013143 0 002535	Aqua	Land 0 0	000	Res 0 005048 0 000072 0 000014	80 01 4
	יייייייייייייייייייייייייייייייייייייי		1 + + + + + + + + + + + + + + + + + + +	•	,	1	 	!)	1	i i k	•

C7 cycloparaffins C8 cycloparaffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Dissolved solids Metals	Air Air Air Air Water Water	0 0.195771 0 0 0	0000000		0.000712 0.00026 0.195771 0	0 0	0.000712 0.00026 0.195771 0 0	0 0 0 0 0.884978 1.3E-08		0000000	3.9E-06 1.4E-06 0.001068 7.9E-06 0 0 1.3E-13
Compound VOC Heavy aromatics Aromatic hydrocarbons C7 cycloparaffins C8 cycloparaffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Dissolved solids Metals	Environmental Compartment Air Air Air Air Air Water Water	Current Factored Score POCP ODP 4.324 0.009	re - Scenario 3 AP	GWP	H H	1 ter	•	Aqua	Land	я 8	10
Compound VOC Heavy aromatics Aromatic hydrocarbons C7 cycloparaffins C8 cycloparaffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Dissolved solids	Environmental Compartment Air Air Air Air Air Air Water Water	Current Emissions Rates 10.89153 0.14245 0.01203 0.008807 0.00322 2.421871 0.017937 0.25.44066 5.0E-07 2.7E-10	ites - Scenario 3	m							
Compound VOC Heavy aromatics Aromatic hydrocarbons C7 cycloparaffins C8 cycloparaffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Dissolved solids	Environmental Compartment Air Air Air Air Air Air Air Air	Revised Factored Score POCP ODP 0DP 11.21828 0 0.012391	AP AP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AWD	HHIT 288 081 3 767803 3 767803 0 0 318194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Terr 13 0.1 0.1 30	79487 79487 51578 10968 40572 51557 0	Aqua 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Land 0 0 0 0 0 0 4 &	Res 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	es 0.5698 0.04812 0.035228 0.01288 9.687484 0.071748

6	75 88 88 00 00 44	•	36 98 48
1.1E-09	Res 0.003957 0.000052 4.4E-06 3.2E-06 0.00088 6.5E-06 0 9.8E-14	Res S	Res 40.33936 0.5698 0.079348
0	000000000		000
_	Land 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Land	Land 0 0
1.0E-08	Aqua 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Aqua	Aqua
0	Terr A 0.725554 0.009489 0.000801 0.000587 0.000215 0.161336 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.00000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.00000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.0000215 0.00000215 0.00000215 0.00000000000000000000000000000000000	Terr	Terr 127.069 1.79487 0.249946
0	HHIT 0.725554 0.009489 0.000801 0.000587 0.000215 0.161336 0.161336 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.0000215 0.0000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000215 0.000	L 0 0 0 0 0	HHIT 266 744 3.767803 0 524689
0		 	000
0	Score - Scenario 3	Scenario 4 Scenario 4	enario 4 GWP 0 0
0	Normalized Factored Score ODP AP 0 554 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	w-	Score - Sce AP 0 0
0	Revised Normaliza POCP ODP 0.725554 0.000801 0 0.161336 0 0 0	Current Factored Score - POCP ODP 4.324 0.015 0.015844 0.14245 0.019837 0.007804 0.002853 2.146092 0.015894 0.022534372 4.6E-07 5.0E-10	Revised Factored Score - Scenario 4 POCP ODP AP 10.38739 0 0 0 0 0
Water	Environmental Compartment Air Air Air Air Air Air Water Water Water	Environmental Compartment Air	Environmental Compartment Air Air
Metals	Compound VOC Heavy aromatics Aromatic hydrocarbons C7 cycloparaffins C8 cycloparaffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Dissolved solids	Compound VOC Heavy aromatics Aromatic hydrocarbons C7 cycloparaffins C8 cycloparaffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Dissolved solids Metals Compound VOC Heavy aromatics Aromatic hydrocarbons C7 cycloparaffins C8 cycloparaffins Hydrocarbons C7 cycloparaffins Hydrocarbons C8 cycloparaffins Hydrocarbons Organic acids Aliphatic hydrocarbons Mobile ions Dissolved solids Metals	Compound VOC Heavy aromatics Aromatic hydrocarbons
_	•	E-5	

	Environmental Compartment	Sped ODP	Score - Scenario 5 AP	Ino 5 GWP	I			Aqua	Land	œ	
	Air	14.63629	0	0	0	375.8542	179.0459		0		
	Air	0	0	0	0	5.218559	2.485967	- '	0 (o	
Aromatic hydrocarbons	Ā	0.023613	o ()	> (0.505355	0.288855	· `	5 (
	ğ.	5 (0	5 (-	0.284232	0.1354	- *	.	0 0.042984	
	Ş.	0	5 (- (> (228501.0	0.049505		.	-	
	Ąĭ	3.0439	0	>	-	78.15518	37.23606	- '	5 (
	Air	0	0	0	0	0	0	- '	0	>	
Aliphatic hydrocarbons	Air	0.000836	0	0	0	0.044833	0.021357	-	0	0.0067	
	Water	0	0	0	0	0	0	678.3003	ဗ		0
	Water	0	0	0	0	0	0	90-38-6 9-10-10-10-10-10-10-10-10-10-10-10-10-10-	မှ မ	0	
	Water	0	0	0	0	0	0	1.3E-08	œ	0 1.4E-09	
	Environmental	Revised Normalized Factored Score	Factored So	core - Scenario	505						
	Compartment	POCP ODP	A	_		TIT L	Terr	Agua	Land	Res	
	Ąir	0.946618	0	0	0	0.946618	346618		0	0 0.005162	
	Air	0	0	. 0	0	0.013143	0.013143	_	0	0 0.000072	
Aromatic hydrocarbons	Ą	0.001527	0	0	0	0 001527	0.001527	_	0		
	Air	0	0	0	0	0.000716	0.000716	_	0		
	Air	· c			0	0 000262	0 000262	_		0 14F-06	
	Δir	0 106867	o c		· c	0 196867	0 196867	-		C	
	Ąi	0) C	o C	0	0	0	-			
Alinhatic hydrocarbons	Ā	0.000054	. 0		0	0 000113	0.000113	_	. 0	0 6.2E-07	
	Water	0	0	0	0	0	0	0.889933	9		
	Water	0	0	0	0	0	0	1.3E-08	8	0	0
	Water	0	0	0	0	0	0	1.7E-11	_	0 1.3E-13	
	Environmental	Factored	Score - Scenario	9			 				
	Compartment	POCP ODP	ΑÞ	GWP	1	H	Terr	Aqua	Land	Res	
	Air	5.291				0					
	Air					0					
Aromatic hydrocarbons	Air	0.046				0					
	Air					0					
	Air					0					
	Air										
	Ą					C					
9						•					
Airpriatic riyarocar boris											
	water										
	Water									, *	
	Water										
	Environmental	Current Emissions Ra	Rates - Scenario 6	ario 6							
	Compartment										
	Air	13 32696									
		0000									

J	C7 cycloparaffins	Ąi	0.011381									
_	C8 cycloparaffins	Air	0.004161									
	Hydrocarbons	Air	3 129964									
_	Organic acids	Air	0.023181									
•	Aliphatic hydrocarbons	Air	0									
_	Mobile ions	Water	32.87886									
	Dissolved solids	Water	6.3E-07									
_	Metals	Water	3.5E-10									
		Environmental	Revised Factored Score - Scenario 6	Score - Scena	ario 6							
	Compound	Compartment	POCP ODP	ΑÞ	dWE)	H	Ter		9	7		
	VOC	Air	229	0	0	0 352 4981	-	7 0 1 0 7	ב ב ב			Kes 62 20704
_	Heavy aromatics	Air	0	0	0		_	7 4R5967		· c	> C	0.2007.04
•	Aromatic hydrocarbons	Air	0.062399	0	0		_	0.763333			> <	0.769190
_	C7 cycloparaffins	Air	0	0	0		_	0.143401		· c	o	0.242320
_	C8 cycloparaffins	Air	0	0	0	0 0110058		0.052429		· c	o c	0.04554
_	Hydrocarbons	Air	3.223863	0	0			39 43755			o c	12 5 1006
_	Organic acids	Air	0	0	0						> C	0.002724
	Aliphatic hydrocarbons	Air	0	0	0	0		· c) c	> <	0.032124
	Mobile ions	Water	0	0	c		· c	· c	710 4021		> 0	> (
_	Dissolved solids	Water	C	· c	· c		۰ د	9	10.403	_ ,	> (o (
-	Metals	Water	o c			5 (> 1	o •	9.85-00	^	0	0
		4 8 8 6	>	5	5	5	0	0	1.3E-08	~	0	1.4E-09
È-8		Environmental	Revised Normalized Factored Score - Scenario	ed Factored So		g						
	Compound	Compartment	POCP ODP	AP		Ξ	Terr		Aciia	- Pur	_	Dae
<u>~</u> :	200	Air	0.887793	0	0	0 0.887793		387793		}	- C	0.004841
_	Heavy aromatics	Air	0	0	0	0 0.013143		0.013143			· c	0.004041
•	Aromatic hydrocarbons	Air	0.004036	0	0			0.004036		o C	.	0.00007
	C7 cycloparaffins	Air	0	0				0.004030		o c	o c	0.000022
RNME	C8 cycloparaffins	Air	0	0		222000 0 0		0.0000.00		> c	> <	4.7E-00
	Hydrocarbons	Air	0.208507	C			_	70200			> 0	1.05-00
PRI	Organic acids	Air	0	· c		>		2003	> (~ .	5 (0.001137
_	Aliphatic hydrocarbons	Air	· C	· c			> ()	· و		0	8.4E-06
_	Mobile ions	Water VA		> 6		.	5	0	0	_	0	0
0F1	Dissolved solids	Water	> 0	> (0	0	0	0.942548	~	0	0
IC'	Motor	יייייייייייייייייייייייייייייייייייייי	> (o (0	0	0	0	1 3E-08	_	0	0
- E:	Metals	water	0	0	0	0	0	0	1.7E-11		0	1.3F-13
19												!